论文标题
布朗非高斯非高斯的扩散自我避免步行
Brownian non-Gaussian diffusion of self-avoiding walks
论文作者
论文摘要
三维蒙特卡洛模拟为最近的理论预测提供了惊人的确认:临界自我避免自我的步行的布朗非高斯无限扩散。尽管质量聚合物中心的均方位移随时间(Brownian行为)线性增长,但初始概率密度函数是强烈的非高斯,并且仅在很大程度上越过高斯。在没有拟合参数的情况下,实现理论和模拟之间的完全一致。我们讨论了在复杂条件(如吸附或theta-转移)之类的复杂条件下解决异常扩散研究的模拟技术。
Three-dimensional Monte Carlo simulations provide a striking confirmation to a recent theoretical prediction: the Brownian non-Gaussian diffusion of critical self-avoiding walks. Although the mean square displacement of the polymer center of mass grows linearly with time (Brownian behavior), the initial probability density function is strongly non-Gaussian and crosses over to Gaussianity only at large time. Full agreement between theory and simulations is achieved without the employment of fitting parameters. We discuss simulation techniques potentially capable of addressing the study of anomalous diffusion under complex conditions like adsorption- or Theta-transition.