论文标题
域自适应回归的对抗性双向试验网络
Adversarial Bi-Regressor Network for Domain Adaptive Regression
论文作者
论文摘要
域适应性(DA)旨在转移标记良好的源域的知识,以促进未标记的目标学习。当转向诸如室内(Wi-Fi)本地化之类的特定任务时,必须学习一个跨域回归剂来减轻域移位。本文提出了一种新颖的方法对抗性双向反应器网络(ABRNET),以寻求更有效的跨域回归模型。具体而言,开发了差异双向试验架构,以最大程度地提高双向试验的差异,以发现远离源分布的不确定目标实例,然后在功能提取器和双回归器之间采用了对抗性训练机制,以产生域内不变的表示。为了进一步弥合大域间隙,设计了一个特定区域的增强模块,旨在合成两个源相似和类似的类似中间域,以逐渐消除原始域的不匹配。对两个跨域回归基准的经验研究说明了我们方法在解决域自适应回归(DAR)问题方面的力量。
Domain adaptation (DA) aims to transfer the knowledge of a well-labeled source domain to facilitate unlabeled target learning. When turning to specific tasks such as indoor (Wi-Fi) localization, it is essential to learn a cross-domain regressor to mitigate the domain shift. This paper proposes a novel method Adversarial Bi-Regressor Network (ABRNet) to seek more effective cross-domain regression model. Specifically, a discrepant bi-regressor architecture is developed to maximize the difference of bi-regressor to discover uncertain target instances far from the source distribution, and then an adversarial training mechanism is adopted between feature extractor and dual regressors to produce domain-invariant representations. To further bridge the large domain gap, a domain-specific augmentation module is designed to synthesize two source-similar and target-similar intermediate domains to gradually eliminate the original domain mismatch. The empirical studies on two cross-domain regressive benchmarks illustrate the power of our method on solving the domain adaptive regression (DAR) problem.