论文标题

RGB热对象检测的位置感知关系学习

Position-Aware Relation Learning for RGB-Thermal Salient Object Detection

论文作者

Zhou, Heng, Tian, Chunna, Zhang, Zhenxi, Li, Chengyang, Ding, Yuxuan, Xie, Yongqiang, Li, Zhongbo

论文摘要

RGB - 热显着对象检测(SOD)结合了两个光谱,以分段图像中的视觉显着区域。大多数现有方法都使用边界图来学习锋利的边界。这些方法忽略了孤立的边界像素和其他自信像素之间的相互作用,从而导致了次优性能。为了解决这个问题,我们建议基于Swin Transformer的RGB-T SOD的职位感知关系学习网络(PRLNET)。 PRLNET探索像素之间的距离和方向关系,以增强阶层内的紧凑性和类间的分离,从而产生具有清晰边界和均匀区域的显着对象掩模。具体而言,我们开发了一个新颖的签名距离图辅助模块(SDMAM)来改善编码器特征表示,该模块考虑了边界社区中不同像素的距离关系。然后,我们使用定向字段(FRDF)设计一种功能改进方法,该方法通过利用明显对象内部的特征来纠正边界邻域的特征。 FRDF利用对象像素之间的方向信息有效地增强了显着区域内的紧凑性。此外,我们构成了一个纯变压器编码器 - 码头网络,以增强RGB-T SOD的多光谱特征表示。最后,我们对三个公共基准数据集进行了定量和定性实验。结果表明,我们所提出的方法的表现优于最先进的方法。

RGB-Thermal salient object detection (SOD) combines two spectra to segment visually conspicuous regions in images. Most existing methods use boundary maps to learn the sharp boundary. These methods ignore the interactions between isolated boundary pixels and other confident pixels, leading to sub-optimal performance. To address this problem,we propose a position-aware relation learning network (PRLNet) for RGB-T SOD based on swin transformer. PRLNet explores the distance and direction relationships between pixels to strengthen intra-class compactness and inter-class separation, generating salient object masks with clear boundaries and homogeneous regions. Specifically, we develop a novel signed distance map auxiliary module (SDMAM) to improve encoder feature representation, which takes into account the distance relation of different pixels in boundary neighborhoods. Then, we design a feature refinement approach with directional field (FRDF), which rectifies features of boundary neighborhood by exploiting the features inside salient objects. FRDF utilizes the directional information between object pixels to effectively enhance the intra-class compactness of salient regions. In addition, we constitute a pure transformer encoder-decoder network to enhance multispectral feature representation for RGB-T SOD. Finally, we conduct quantitative and qualitative experiments on three public benchmark datasets.The results demonstrate that our proposed method outperforms the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源