论文标题

Mulbot:基于多元时间序列的无监督机器人检测

MulBot: Unsupervised Bot Detection Based on Multivariate Time Series

论文作者

Mannocci, Lorenzo, Cresci, Stefano, Monreale, Anna, Vakali, Athina, Tesconi, Maurizio

论文摘要

在线社交网络由于其在低质量信息的传播中的作用而积极参与删除恶意社交机器人。但是,大多数现有的机器人检测器都是无法捕获复杂机器人不断发展的行为的监督分类器。在这里,我们提出了Mulbot,这是一种基于多元时间序列(MTS)的无监督的机器人检测器。我们第一次利用从用户时间表中提取的多维时间功能。我们使用LSTM AutoCododer管理多维性,该模块将MTS投射在合适的潜在空间中。然后,我们在此编码表示形式上执行聚类步骤,以识别非常相似用户的密集组 - 一种已知的自动化迹象。最后,我们执行一个实现F1得分$ = 0.99 $的二进制分类任务,表现优于最先进的方法(F1分数$ \ le 0.97 $)。 Mulbot不仅在二元分类任务中取得了出色的成果,而且我们还在一项新颖且实际上与实际上相关的任务中证明了它的优势:检测和分离不同的僵尸网络。在此多级分类任务中,我们实现了F1得分$ = 0.96 $。我们通过估计模型中使用的不同特征的重要性,并评估Mulbot推广到新看不见的机器人的能力,从而提出了解决监督机器人检测器的概括性缺陷的解决方案。

Online social networks are actively involved in the removal of malicious social bots due to their role in the spread of low quality information. However, most of the existing bot detectors are supervised classifiers incapable of capturing the evolving behavior of sophisticated bots. Here we propose MulBot, an unsupervised bot detector based on multivariate time series (MTS). For the first time, we exploit multidimensional temporal features extracted from user timelines. We manage the multidimensionality with an LSTM autoencoder, which projects the MTS in a suitable latent space. Then, we perform a clustering step on this encoded representation to identify dense groups of very similar users -- a known sign of automation. Finally, we perform a binary classification task achieving f1-score $= 0.99$, outperforming state-of-the-art methods (f1-score $\le 0.97$). Not only does MulBot achieve excellent results in the binary classification task, but we also demonstrate its strengths in a novel and practically-relevant task: detecting and separating different botnets. In this multi-class classification task we achieve f1-score $= 0.96$. We conclude by estimating the importance of the different features used in our model and by evaluating MulBot's capability to generalize to new unseen bots, thus proposing a solution to the generalization deficiencies of supervised bot detectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源