论文标题
带有真实空间不变的Hofstadter拓扑结构和重进射击对称性
Hofstadter Topology with Real Space Invariants and Reentrant Projective Symmetries
论文作者
论文摘要
通过意识到翻译组的投影表示,添加磁通量会破坏Bloch的定理。所得的Hofstadter光谱编码频带对通量的非扰动响应。根据其拓扑结构,添加通量可以强制执行散装间隙闭合(hofstadter半学)或边界状态泵(Hofstadter拓扑绝缘子)。在这项工作中,我们介绍了这些Hofstadter阶段的真实空间分类。我们根据对称保护的真实空间不变式(RSI)给出了拓扑指数,该空间不变式(RSIS)编码脆弱拓扑状态对通量的批量和边界响应。实际上,我们发现紧密结合模型中的通量周期性会导致磁场折断的对称性在强磁通下重新输入,从而形成射影点组表示。我们完全对射射点组进行了分类,并发现定义它们的Schur乘数是沿晶体键计算的Arahanov-Bohm相。我们发现,非平凡的Schur乘数足以通过仅零升拓扑来预测和保护霍夫史塔特响应。
Adding magnetic flux to a band structure breaks Bloch's theorem by realizing a projective representation of the translation group. The resulting Hofstadter spectrum encodes the non-perturbative response of the bands to flux. Depending on their topology, adding flux can enforce a bulk gap closing (a Hofstadter semimetal) or boundary state pumping (a Hofstadter topological insulator). In this work, we present a real-space classification of these Hofstadter phases. We give topological indices in terms of symmetry-protected Real Space Invariants (RSIs) which encode bulk and boundary responses of fragile topological states to flux. In fact, we find that the flux periodicity in tight-binding models causes the symmetries which are broken by the magnetic field to reenter at strong flux where they form projective point group representations. We completely classify the reentrant projective point groups and find that the Schur multipliers which define them are Arahanov-Bohm phases calculated along the bonds of the crystal. We find that a nontrivial Schur multiplier is enough to predict and protect the Hofstadter response with only zero-flux topology.