论文标题
单层FESE/srtio $ _3 $中超导相干相干性的抑制和复兴
Suppression and revival of superconducting phase coherence in monolayer FeSe/SrTiO$_3$
论文作者
论文摘要
在Srtio $ _3 $(FESE/STO)上生长的单层FESE是一种与散装FESE不同的界面高温超导体。由于这种二维系统在大气中的脆弱性,因此对其内在超导性和相互交织的顺序的研究很大程度上仅限于与超高真空环境兼容的表面敏感电荷探针。然而,界面的超导相一致性对于探测很具有挑战性。在这里,我们在FESE/STO上进行超高真空中的原位相互感应,并通过角度分辨光发射光谱(ARPES)结合频带映射。我们发现,即使单层在50 K以上表现出间隙闭合温度,但令人惊讶的是,直至5 k的diamagnetism均未可见。对于几层FESE/STO,直到超过5层的关键数量,直到突然出现Diamagnetism。但是,在这些厚样品中,超流体密度不会饱和到基础温度。另一方面,可以通过在顶部沉积宴会层来抑制几层FESE/STO中的Diamagnetism。超导过渡比厚的FESE/STO中的过渡更加明显。但是,TC和超流体密度都随着盛宴厚度的增加而降低。在FETE/FESE/STO异质结构上闪耀的紫外线可以增强TC,从而独立于FESE厚度,表明Diamagnetism起源于FESE/Sto界面。我们的观察结果可以通过一种场景来理解,在这种情况下,界面超导相一致性是高度各向异性的。
Monolayer FeSe grown on SrTiO$_3$ (FeSe/STO) is an interfacial high temperature superconductor distinctively different from bulk FeSe. Due to the fragility of this two-dimensional system in the atmosphere, the investigation of its intrinsic superconductivity and intertwined orders has largely been limited to surface-sensitive charge probes compatible with ultra-high vacuum environment. However, the superconducting phase coherence of the interface is challenging to probe. Here, we perform in-situ mutual inductance in ultra-high vacuum on FeSe/STO in combination with band mapping by angle-resolved photoemission spectroscopy (ARPES). We find that even though the monolayer showed a gap-closing temperature above 50 K, surprisingly no diamagnetism is visible down to 5 K. This is the case for few-layer FeSe/STO until it exceeds a critical number of 5 layers where diamagnetism suddenly appears. But the superfluid density does not saturate down to the base temperature in these thick samples. On the other hand, the suppression of diamagnetism in the few-layer FeSe/STO can be lifted by depositing a FeTe layer on top. The superconducting transition is much sharper than that in the thick FeSe/STO. However, Tc and superfluid density both decrease with increasing FeTe thickness. Shining ultraviolet light on the FeTe/FeSe/STO heterostructure enhances Tc similarly independent of the FeSe thickness, showing that the diamagnetism originates at the FeSe/STO interface. Our observation may be understood by a scenario in which interfacial superconducting phase coherence is highly anisotropic.