论文标题
可压缩的Navier-Stokes方程的稀疏波的渐近稳定性
Asymptotic stability of rarefaction waves for compressible Navier-Stokes equations with relaxation
论文作者
论文摘要
建立了1-D松弛的压缩性等纳维尔 - 长方体方程的稀疏波的渐近稳定性。对于具有不同远场值的初始数据,我们表明存在一个独特的时间解决方案。此外,随着时间的流逝,所获得的解决方案显示出具有相应的Riemann初始数据的$ p $系统的稀有波溶液的收敛。证明基于$ l^2 $能量方法。
The asymptotic stability of rarefaction wave for 1-d relaxed compressible isentropic Navier-Stokes equations is established. For initial data with different far-field values, we show that there exists a unique global in time solution. Moreover, as time goes to infinity, the obtained solutions are shown to converge uniformly to rarefaction wave solution of $p$-system with corresponding Riemann initial data. The proof is based on $L^2$ energy methods.