论文标题

一组完整的措施避免了cantor套装

Sets of full measure avoiding Cantor sets

论文作者

Kolountzakis, Mihail N.

论文摘要

关于ERD \ H OS相似性问题(表明,对于任何无限集$ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a),我们给出了一些新的无限集示例,这些示例是不通用的,即满足上述猜测。这些是对称的Cantor集合$ C $,可能很薄:定义Cantor套件的$ n $ Then Generation间隔的长度几乎呈指数增长。此外,我们实现了构建一个集合,而不仅是积极的措施,还可以构建\ textit {完整度量}不包含$ c $的任何仿制副本。我们的方法是概率。

In relation to the Erd\H os similarity problem (show that for any infinite set $A$ of real numbers there exists a set of positive Lebesgue measure which contains no affine copy of $A$) we give some new examples of infinite sets which are not universal in measure, i.e. they satisfy the above conjecture. These are symmetric Cantor sets $C$ which can be quite thin: the length of the $n$-th generation intervals defining the Cantor set is decreasing almost doubly exponentially. Further, we achieve to construct a set, not just of positive measure, but of \textit{full measure} not containing any affine copy of $C$. Our method is probabilistic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源