论文标题
基于角的边缘捆绑并联坐标图,以进行大型集合模拟数据的目视分析
Angular-based Edge Bundled Parallel Coordinates Plot for the Visual Analysis of Large Ensemble Simulation Data
论文作者
论文摘要
随着现代高性能计算(HPC)系统的计算能力和资源的持续增加,大规模合奏模拟已广泛用于科学和工程领域,尤其是在气象学和气候科学领域。众所周知,仿真输出是大型时变,多元和多相关数据集,这些数据集对可视化和分析任务构成了特定的挑战。在这项工作中,我们专注于广泛使用的并行坐标图(PCP),以分析成员之间不同参数(例如变量)之间的相互关系。但是,PCP可能会遭受视觉混乱和绘制性能的困扰,而待分析的数据大小(即polyline的数量)可能会遭受视觉效果。为了克服这个问题,我们通过添加连接代表平行轴之间线段倾斜度的均值和方差的Bézier曲线来提出对PCP的扩展。提出的基于角的平行坐标图(APCP)能够简化整个集合数据集的简化概述,同时维持相邻变量之间的相关信息。为了验证其有效性,我们开发了一个视觉分析原型系统,并通过使用超级计算机Fugaku的气象集合模拟输出进行了评估。
With the continuous increase in the computational power and resources of modern high-performance computing (HPC) systems, large-scale ensemble simulations have become widely used in various fields of science and engineering, and especially in meteorological and climate science. It is widely known that the simulation outputs are large time-varying, multivariate, and multivalued datasets which pose a particular challenge to the visualization and analysis tasks. In this work, we focused on the widely used Parallel Coordinates Plot (PCP) to analyze the interrelations between different parameters, such as variables, among the members. However, PCP may suffer from visual cluttering and drawing performance with the increase on the data size to be analyzed, that is, the number of polylines. To overcome this problem, we present an extension to the PCP by adding Bézier curves connecting the angular distribution plots representing the mean and variance of the inclination of the line segments between parallel axes. The proposed Angular-based Parallel Coordinates Plot (APCP) is capable of presenting a simplified overview of the entire ensemble data set while maintaining the correlation information between the adjacent variables. To verify its effectiveness, we developed a visual analytics prototype system and evaluated by using a meteorological ensemble simulation output from the supercomputer Fugaku.