论文标题
使用比例数据结构保存的非负基质分解
Non-Negative Matrix Factorization with Scale Data Structure Preservation
论文作者
论文摘要
本文中描述的模型属于专为数据表示和降低尺寸的非负矩阵分解方法的家族。除了保留数据阳性属性外,它还旨在在矩阵分解过程中保留数据的结构。这个想法是在NMF成本函数中添加一个惩罚项,以在原始数据点和转换数据点的成对相似性矩阵之间实现比例关系。新模型的解决方案涉及为系数矩阵得出新的参数化更新方案,这使得在用于群集和分类时可以提高还原数据的质量。将所提出的聚类算法与某些现有的基于NMF的算法和某些基于多种学习的算法进行比较,当应用于某些现实生活数据集时。获得的结果显示了所提出的算法的有效性。
The model described in this paper belongs to the family of non-negative matrix factorization methods designed for data representation and dimension reduction. In addition to preserving the data positivity property, it aims also to preserve the structure of data during matrix factorization. The idea is to add, to the NMF cost function, a penalty term to impose a scale relationship between the pairwise similarity matrices of the original and transformed data points. The solution of the new model involves deriving a new parametrized update scheme for the coefficient matrix, which makes it possible to improve the quality of reduced data when used for clustering and classification. The proposed clustering algorithm is compared to some existing NMF-based algorithms and to some manifold learning-based algorithms when applied to some real-life datasets. The obtained results show the effectiveness of the proposed algorithm.