论文标题

RIS辅助无线网络中移动UE的阻塞预测:一种深度学习方法

Blockage Prediction for Mobile UE in RIS-assisted Wireless Networks: A Deep Learning Approach

论文作者

Ahmed, Shakil, Abdelmawla, Ibrahim, Kamal, Ahmed E., Selim, Mohamed Y.

论文摘要

由于无线网络中的严重阻塞条件,在到达接收器之前,传输信号可能会大大降低。因此,由于通信节点之间的封锁,传输信号的可靠性可能会引起问题。得益于可重构智能表面(RISS)具有不同反射角度反映事件信号的能力,这可以通过最佳地反映传输信号向接收节点的传输信号来应对封锁效应,从而改善了无线网络的性能。通过这种动机,本文提出了从基站(BS)到移动用户设备(UE)的RIS辅助无线通信问题。 BS配备了RGB相机。我们在BS和RIS面板上使用RGB摄像头来改善系统的性能,同时考虑通过多个路径传播的信号,而多普勒则为移动UE传播。首先,使用RGB摄像机来检测没有阻塞的UE的存在。当不成功的情况下,RIS辅助增益接管,然后用于检测UE是否“存在但被阻止”或“缺失”。该问题被确定为三元分类问题,其目的是最大化UE通信阻塞检测的可能性。我们找到了使用深神经学习模型预测给定RGB图像和RIS辅助数据速率的阻塞状态的最佳解决方案。我们采用剩余网络18层神经网络模型来找到这种阻塞预测的最佳概率。广泛的仿真结果表明,与基线方案相比,我们提出的RIS面板辅助模型可以使阻塞预测概率问题最大化的准确性增加了38 \%。

Due to significant blockage conditions in wireless networks, transmitted signals may considerably degrade before reaching the receiver. The reliability of the transmitted signals, therefore, may be critically problematic due to blockages between the communicating nodes. Thanks to the ability of Reconfigurable Intelligent Surfaces (RISs) to reflect the incident signals with different reflection angles, this may counter the blockage effect by optimally reflecting the transmit signals to receiving nodes, hence, improving the wireless network's performance. With this motivation, this paper formulates a RIS-aided wireless communication problem from a base station (BS) to a mobile user equipment (UE). The BS is equipped with an RGB camera. We use the RGB camera at the BS and the RIS panel to improve the system's performance while considering signal propagating through multiple paths and the Doppler spread for the mobile UE. First, the RGB camera is used to detect the presence of the UE with no blockage. When unsuccessful, the RIS-assisted gain takes over and is then used to detect if the UE is either "present but blocked" or "absent". The problem is determined as a ternary classification problem with the goal of maximizing the probability of UE communication blockage detection. We find the optimal solution for the probability of predicting the blockage status for a given RGB image and RIS-assisted data rate using a deep neural learning model. We employ the residual network 18-layer neural network model to find this optimal probability of blockage prediction. Extensive simulation results reveal that our proposed RIS panel-assisted model enhances the accuracy of maximization of the blockage prediction probability problem by over 38\% compared to the baseline scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源