论文标题

用于不确定性量化的量子算法:应用于部分微分方程

Quantum algorithms for uncertainty quantification: application to partial differential equations

论文作者

Golse, Francois, Jin, Shi, Liu, Nana

论文摘要

不确定性量化中的大多数问题,尽管在科学计算,应用数学和数据科学方面无处不在,但在古典计算机上仍然可以强大。对于在部分微分方程(PDE)中产生的不确定性,需要大量M >> 1个样品以获得准确的集合平均值。这通常涉及解决PDE M次。此外,为了表征PDE中的随机性,在大多数情况下,随机输入变量的尺寸L很高,经典算法却遭受了差异性的诅咒。我们为与经典相比,在各种重要方案中,在M和L中更有效的PDE提出了新的量子算法。我们介绍了将原始的D维方程(具有不确定系数)传递到D+L(用于耗散方程)或D+2L(对于波类方程)尺寸方程(具有某些系数)的转换,其中不确定性仅在初始数据中出现。这些转换还允许人们叠加M不同的初始数据,因此量子算法的计算成本从M不同的样本中获得集合平均值的平均值是独立的,同时在D,L中也显示出潜在的优势,并且在计算集合平均溶液或物理可观察物中的计算集合平均值或物理可观察力。

Most problems in uncertainty quantification, despite its ubiquitousness in scientific computing, applied mathematics and data science, remain formidable on a classical computer. For uncertainties that arise in partial differential equations (PDEs), large numbers M>>1 of samples are required to obtain accurate ensemble averages. This usually involves solving the PDE M times. In addition, to characterise the stochasticity in a PDE, the dimension L of the random input variables is high in most cases, and classical algorithms suffer from curse-of-dimensionality. We propose new quantum algorithms for PDEs with uncertain coefficients that are more efficient in M and L in various important regimes, compared to their classical counterparts. We introduce transformations that transfer the original d-dimensional equation (with uncertain coefficients) into d+L (for dissipative equations) or d+2L (for wave type equations) dimensional equations (with certain coefficients) in which the uncertainties appear only in the initial data. These transformations also allow one to superimpose the M different initial data, so the computational cost for the quantum algorithm to obtain the ensemble average from M different samples is then independent of M, while also showing potential advantage in d, L and precision in computing ensemble averaged solutions or physical observables.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源