论文标题

单个压缩光场测量的快速差异估计

Fast Disparity Estimation from a Single Compressed Light Field Measurement

论文作者

Martinez, Emmanuel, Vargas, Edwin, Arguello, Henry

论文摘要

来自光场的大量空间和角度信息允许开发多个差异估计方法。但是,对光场的获取需要高存储和处理成本,从而限制了该技术在实际应用中的使用。为了克服这些缺点,压缩感应(CS)理论使光学体系结构的开发能够获得单个编码的光场测量。该测量是使用需要高计算成本的优化算法或深神经网络来解码的。从压缩光场进行的传统差异估计方法需要首先恢复整个光场,然后再恢复后处理步骤,从而需要长时间。相比之下,这项工作提出了通过省略传统方法所需的恢复步骤来从单个压缩测量中进行快速差异估计。具体而言,我们建议共同优化光学体系结构,以获取单个编码的光场快照和卷积神经网络(CNN),以估计差异图。在实验上,提出的方法估计了与使用深度学习方法重建的光场相当的差异图。此外,所提出的方法在训练和推理中的速度比估计重建光场差异的最佳方法要快20倍。

The abundant spatial and angular information from light fields has allowed the development of multiple disparity estimation approaches. However, the acquisition of light fields requires high storage and processing cost, limiting the use of this technology in practical applications. To overcome these drawbacks, the compressive sensing (CS) theory has allowed the development of optical architectures to acquire a single coded light field measurement. This measurement is decoded using an optimization algorithm or deep neural network that requires high computational costs. The traditional approach for disparity estimation from compressed light fields requires first recovering the entire light field and then a post-processing step, thus requiring long times. In contrast, this work proposes a fast disparity estimation from a single compressed measurement by omitting the recovery step required in traditional approaches. Specifically, we propose to jointly optimize an optical architecture for acquiring a single coded light field snapshot and a convolutional neural network (CNN) for estimating the disparity maps. Experimentally, the proposed method estimates disparity maps comparable with those obtained from light fields reconstructed using deep learning approaches. Furthermore, the proposed method is 20 times faster in training and inference than the best method that estimates the disparity from reconstructed light fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源