论文标题

模块化降解模拟和隔离摄像头的恢复

Modular Degradation Simulation and Restoration for Under-Display Camera

论文作者

Zhou, Yang, Song, Yuda, Du, Xin

论文摘要

播放摄像头(UDC)为全屏智能手机提供了优雅的解决方案。但是,由于传感器位于显示屏下,UDC捕获的图像遭受了严重的降解。尽管可以通过图像恢复网络解决此问题,但这些网络需要大规模的图像对进行培训。为此,我们提出了一个模块化网络,称为MPGNET,该网络使用生成对抗网络(GAN)框架来模拟UDC成像。具体来说,我们注意到UDC成像降解过程包含亮度衰减,模糊和噪声损坏。因此,我们将每个降解与特征相关的模块化网络建模,并将所有模块化网络都级联成型以形成生成器。我们可以训练发电机来模拟UDC成像降解过程。此外,我们提出了一个用于UDC图像恢复的Dwformer的变压器式网络。出于实际目的,我们使用深度卷积而不是多头自我注意力来汇总本地空间信息。此外,我们提出了一个新型的通道注意模块来汇总全局信息,这对于亮度恢复至关重要。我们对UDC基准进行了评估,我们的方法在P-Oled轨道上超过了先前的最新模型,在T-Oled轨道上分别超过了0.71 dB。

Under-display camera (UDC) provides an elegant solution for full-screen smartphones. However, UDC captured images suffer from severe degradation since sensors lie under the display. Although this issue can be tackled by image restoration networks, these networks require large-scale image pairs for training. To this end, we propose a modular network dubbed MPGNet trained using the generative adversarial network (GAN) framework for simulating UDC imaging. Specifically, we note that the UDC imaging degradation process contains brightness attenuation, blurring, and noise corruption. Thus we model each degradation with a characteristic-related modular network, and all modular networks are cascaded to form the generator. Together with a pixel-wise discriminator and supervised loss, we can train the generator to simulate the UDC imaging degradation process. Furthermore, we present a Transformer-style network named DWFormer for UDC image restoration. For practical purposes, we use depth-wise convolution instead of the multi-head self-attention to aggregate local spatial information. Moreover, we propose a novel channel attention module to aggregate global information, which is critical for brightness recovery. We conduct evaluations on the UDC benchmark, and our method surpasses the previous state-of-the-art models by 1.23 dB on the P-OLED track and 0.71 dB on the T-OLED track, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源