论文标题

深度监督的两阶段训练计划,用于深视频战斗检测模型

Weakly Supervised Two-Stage Training Scheme for Deep Video Fight Detection Model

论文作者

Qi, Zhenting, Zhu, Ruike, Fu, Zheyu, Chai, Wenhao, Kindratenko, Volodymyr

论文摘要

视频中的战斗检测是当今监视系统和流媒体的流行率的新兴深度学习应用程序。以前的工作主要依靠行动识别技术来解决这个问题。在本文中,我们提出了一种简单但有效的方法,该方法从新的角度解决了任务:我们将战斗检测模型设计为动作感知功能提取器和异常得分生成器的组成。此外,考虑到为视频收集框架级标签过于费力,我们设计了一个弱监督的两阶段训练计划,在该计划中,我们利用在视频级别标签上计算出的多个实体学习损失来培训得分生成器,并采用自我训练技术来进一步提高其性能。在公开可用的大规模数据集(UBI-Fights)上进行了广泛的实验,证明了我们方法的有效性,并且数据集的性能超过了以前的几种先前的最新方法。此外,我们收集了一个新的数据集VFD-2000,该数据集专门研究视频战斗检测,比现有数据集更大,场景更大。我们的方法的实现和提出的数据集将在https://github.com/hepta-col/videofightdetection上公开获得。

Fight detection in videos is an emerging deep learning application with today's prevalence of surveillance systems and streaming media. Previous work has largely relied on action recognition techniques to tackle this problem. In this paper, we propose a simple but effective method that solves the task from a new perspective: we design the fight detection model as a composition of an action-aware feature extractor and an anomaly score generator. Also, considering that collecting frame-level labels for videos is too laborious, we design a weakly supervised two-stage training scheme, where we utilize multiple-instance-learning loss calculated on video-level labels to train the score generator, and adopt the self-training technique to further improve its performance. Extensive experiments on a publicly available large-scale dataset, UBI-Fights, demonstrate the effectiveness of our method, and the performance on the dataset exceeds several previous state-of-the-art approaches. Furthermore, we collect a new dataset, VFD-2000, that specializes in video fight detection, with a larger scale and more scenarios than existing datasets. The implementation of our method and the proposed dataset will be publicly available at https://github.com/Hepta-Col/VideoFightDetection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源