论文标题

Smolbox:分子动力学探索的数据流模型

sMolBoxes: Dataflow Model for Molecular Dynamics Exploration

论文作者

Ulbrich, Pavol, Waldner, Manuela, Furmanová, Katarína, Marques, Sérgio M., Bednář, David, Kozlikova, Barbora, Byška, Jan

论文摘要

我们提出了Smolboxes,这是用于探索和分析长分子动力学(MD)模拟的数据流表示。当MD模拟达到数百万个快照时,逐帧的观察不再可行。因此,生物化学家在很大程度上仅依赖于几何和物理化学特性的定量分析。但是,抽象方法研究固有的空间数据的用法阻碍了探索并带来了相当大的工作量。 Smolboxes链接具有交互式3D可视化的用户定义属性集的定量分析。它们可以对分子行为进行视觉解释,从而有效发现MD模拟的生化部分。 Smolboxs遵循基于节点的模型,用于柔性定义,组合以及对要研究的属性的立即评估。渐进分析能够在多个属性之间进行流体切换,从而有助于假设产生。每个Smolbox都可以快速了解观察到的属性或功能,在BigBox视图中更详细地使用。案例研究表明,即使有相对较少的Smolboxes,也可以表达复杂的分析任务,并且它们在探索性分析中的使用被认为比传统基于脚本的方法更有效。

We present sMolBoxes, a dataflow representation for the exploration and analysis of long molecular dynamics (MD) simulations. When MD simulations reach millions of snapshots, a frame-by-frame observation is not feasible anymore. Thus, biochemists rely to a large extent only on quantitative analysis of geometric and physico-chemical properties. However, the usage of abstract methods to study inherently spatial data hinders the exploration and poses a considerable workload. sMolBoxes link quantitative analysis of a user-defined set of properties with interactive 3D visualizations. They enable visual explanations of molecular behaviors, which lead to an efficient discovery of biochemically significant parts of the MD simulation. sMolBoxes follow a node-based model for flexible definition, combination, and immediate evaluation of properties to be investigated. Progressive analytics enable fluid switching between multiple properties, which facilitates hypothesis generation. Each sMolBox provides quick insight to an observed property or function, available in more detail in the bigBox View. The case study illustrates that even with relatively few sMolBoxes, it is possible to express complex analyses tasks, and their use in exploratory analysis is perceived as more efficient than traditional scripting-based methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源