论文标题

在培训期间使用LLMS增强可解释的模型

Augmenting Interpretable Models with LLMs during Training

论文作者

Singh, Chandan, Askari, Armin, Caruana, Rich, Gao, Jianfeng

论文摘要

最近的大型语言模型(LLMS)证明了越来越多的任务的出色预测性能。但是,它们扩散到高风险领域(例如药物)和计算限制的环境已经产生了对解释性和效率的新兴需求。我们通过提出增强的可解释模型(Aug-Imodels)来满足这一需求,这是一个框架,用于利用LLMS所学的知识来构建极有效和可解释的模型。与LLM相比,Aug-Imodels在拟合期间使用LLMS,但在推理过程中不使用LLM,允许完全透明度,并且通常会提高超过1,000x的速度/记忆。我们探索了自然语言处理中Aug-Imodels的两个实例化:(i)Aug-GAM,它通过LLM和(ii)Aug-Tree增强了具有解耦嵌入的广义添加剂模型,该模型可以增强具有LLM特征扩展的决策树。在各种文本分类数据集中,两者都表现优于其非官方的同行。尽管参数减少了10,000倍,并且完全透明了,但Aug-GAM甚至可以胜过更大的模型(例如6亿个参数GPT-J模型)。我们在自然语言fMRI研究中进一步探索了8月 - 帝国,在该研究中,它们从科学数据中产生了有趣的解释。 GitHub上提供了所有用于使用Aug-Imodels和复制结果的代码。

Recent large language models (LLMs) have demonstrated remarkable prediction performance for a growing array of tasks. However, their proliferation into high-stakes domains (e.g. medicine) and compute-limited settings has created a burgeoning need for interpretability and efficiency. We address this need by proposing Augmented Interpretable Models (Aug-imodels), a framework for leveraging the knowledge learned by LLMs to build extremely efficient and interpretable models. Aug-imodels use LLMs during fitting but not during inference, allowing complete transparency and often a speed/memory improvement of greater than 1,000x for inference compared to LLMs. We explore two instantiations of Aug-imodels in natural-language processing: (i) Aug-GAM, which augments a generalized additive model with decoupled embeddings from an LLM and (ii) Aug-Tree, which augments a decision tree with LLM feature expansions. Across a variety of text-classification datasets, both outperform their non-augmented counterparts. Aug-GAM can even outperform much larger models (e.g. a 6-billion parameter GPT-J model), despite having 10,000x fewer parameters and being fully transparent. We further explore Aug-imodels in a natural-language fMRI study, where they generate interesting interpretations from scientific data. All code for using Aug-imodels and reproducing results is made available on Github.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源