论文标题
拓扑半学SMMG的电子和磁性特性$ _2 $ bi $ _2 $
Electronic and magnetic properties of the topological semimetal SmMg$_2$Bi$_2$
论文作者
论文摘要
狄拉克半法显示出非平凡的物理特性,可以在适当的外部条件下托管外来量子状态,例如Weyl Semimetals和拓扑绝缘子。在这里,通过结合角度分辨光发射光谱测量(ARPE)和第一原则计算,我们证明了Zintl-phase Compound SMMG SMMG $ _2 $ _2 $ bi $ _2 $属于与拓扑迪拉克半际性dirac semimetallic状态的紧密相关性。 ARPES结果显示,在Fermi级别附近的区域中心($ e_ \ Mathrm {f} $)的区域中心处的一个类似dirac的频段交叉点,这是通过第一原则计算进一步确认的。理论研究还表明,SMMG $ _2 $ bi $ _2 $属于$ z_2 $拓扑类,并在$ e_ \ mathrm {f} $附近托管自旋偏振状态。 Zintl的理论预测,该材料中SM的价态应为SM $^{2+} $,但是我们检测到许多SM-4 $ F $多重状态(Flat-Bands),其能量位置表明同时存在SM $^{2+} $和SM $ $^{3+} $。同样很明显,这些平坦带和其他分散状态在彼此交叉时会强烈杂交。由于存在Sm $^{3+} $离子,除了对SM $^{2+} $离子的范围类似于Van Vleck的行为,磁化敏感性$χ(T)$的温度依赖性在低温区域显示出类似居里的贡献。本研究将有助于更好地理解相关材料的电子结构,磁性和运输特性。
Dirac semimetals show nontrivial physical properties and can host exotic quantum states like Weyl semimetals and topological insulators under suitable external conditions. Here, by combining angle-resolved photoemission spectroscopy measurements (ARPES) and first-principle calculations, we demonstrate that Zintl-phase compound SmMg$_2$Bi$_2$ belongs to the close proximity to a topological Dirac semimetallic state. ARPES results show a Dirac-like band crossing at the zone-center near the Fermi level ($E_\mathrm {F}$) which is further confirmed by first-principle calculations. Theoretical studies also reveal that SmMg$_2$Bi$_2$ belongs to a $Z_2$ topological class and hosts spin-polarized states around the $E_\mathrm {F}$. Zintl's theory predicts that the valence state of Sm in this material should be Sm$^{2+}$, however we detect many Sm-4$f$ multiplet states (flat-bands) whose energy positions suggest the presence of both Sm$^{2+}$ and Sm$^{3+}$. It is also evident that these flat-bands and other dispersive states are strongly hybridized when they cross each other. Due to the presence of Sm$^{3+}$ ions, the temperature dependence of magnetic susceptibility $χ(T)$ shows Curie-Weiss-like contribution in the low temperature region, in addition to the Van Vleck-like behaviour expected for the Sm$^{2+}$ ions. The present study will help in better understanding of the electronic structure, magnetism and transport properties of related materials.