论文标题
TAD:通过视频监视检测到交通事故的大规模基准测试
TAD: A Large-Scale Benchmark for Traffic Accidents Detection from Video Surveillance
论文作者
论文摘要
自动交通事故检测已吸引机器视觉社区,因为它对自主智能运输系统(ITS)的发展产生了影响,并且对交通安全的重要性。然而,大多数关于有效分析和交通事故预测的研究都使用了覆盖范围有限的小规模数据集,从而限制了其效果和适用性。交通事故中现有的数据集是小规模,不是来自监视摄像机,而不是开源的,或者不是为高速公路场景建造的。由于在高速公路上发生了事故,因此往往会造成严重损坏,并且太快了,无法赶上现场。针对从监视摄像机收集的高速公路交通事故的开源数据集非常需要和实际上。为了帮助视力社区解决这些缺点,我们努力收集涵盖丰富场景的真实交通事故的视频数据。在通过各个维度进行集成和注释后,在这项工作中提出了一个名为TAD的大规模交通事故数据集。在这项工作中,使用公共主流视觉算法或框架进行了有关图像分类,对象检测和视频分类任务的各种实验,以证明不同方法的性能。提出的数据集以及实验结果将作为改善计算机视觉研究的新基准提出。
Automatic traffic accidents detection has appealed to the machine vision community due to its implications on the development of autonomous intelligent transportation systems (ITS) and importance to traffic safety. Most previous studies on efficient analysis and prediction of traffic accidents, however, have used small-scale datasets with limited coverage, which limits their effect and applicability. Existing datasets in traffic accidents are either small-scale, not from surveillance cameras, not open-sourced, or not built for freeway scenes. Since accidents happened in freeways tend to cause serious damage and are too fast to catch the spot. An open-sourced datasets targeting on freeway traffic accidents collected from surveillance cameras is in great need and of practical importance. In order to help the vision community address these shortcomings, we endeavor to collect video data of real traffic accidents that covered abundant scenes. After integration and annotation by various dimensions, a large-scale traffic accidents dataset named TAD is proposed in this work. Various experiments on image classification, object detection, and video classification tasks, using public mainstream vision algorithms or frameworks are conducted in this work to demonstrate performance of different methods. The proposed dataset together with the experimental results are presented as a new benchmark to improve computer vision research, especially in ITS.