论文标题

有效的实时铁路流量优化:重新分解,重新排序和重新安排问题

Efficient Real-time Rail Traffic Optimization: Decomposition of Rerouting, Reordering, and Rescheduling Problem

论文作者

Lindenmaier, László, Lövétei, István Ferenc, Aradi, Szilárd

论文摘要

铁路时间表以最佳方式设计,以最大程度地利用有关不同目标的基础架构的容量用法。当预先计划的时间表因各种干扰而无法实现时,就会发生实时铁路交通管理问题;因此,必须重新安排,重新排序和重新安排火车。优化实时铁路交通管理旨在解决最大程度地延迟传播甚至能源消耗的冲突。在本文中,考虑到与安全性与铁路交通管理相关的问题,即重叠,现有的混合企业线性编程优化模型将扩展。但是,在复杂的控制区域和涉及许多火车的交通情况下,解决最终模型可能会耗时。因此,我们通过分解原始问题来提出不同的运行时有效的多阶段启发式模型。模型分解的影响是在不同的铁轨网络中进行数学和实验研究的,以及有关优化的客观价值和计算需求的各种模拟流量方案。除了为流量管理问题提供更现实的解决方案外,提议的多阶段模型还大大降低了优化运行时。

The railway timetables are designed in an optimal manner to maximize the capacity usage of the infrastructure concerning different objectives besides avoiding conflicts. The real-time railway traffic management problem occurs when the pre-planned timetable cannot be fulfilled due to various disturbances; therefore, the trains must be rerouted, reordered, and rescheduled. Optimizing the real-time railway traffic management aims to resolve the conflicts minimizing the delay propagation or even the energy consumption. In this paper, the existing mixed-integer linear programming optimization models are extended considering a safety-relevant issue of railway traffic management, the overlaps. However, solving the resulting model can be time-consuming in complex control areas and traffic situations involving many trains. Therefore, we propose different runtime efficient multi-stage heuristic models by decomposing the original problem. The impact of the model decomposition is investigated mathematically and experimentally in different rail networks and various simulated traffic scenarios concerning the objective value and the computational demand of the optimization. Besides providing a more realistic solution for the traffic management problem, the proposed multi-stage models significantly decrease the optimization runtime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源