论文标题
用于建模基洛诺诺维的光谱和光曲线的静态不熟悉性
Actinide opacities for modeling the spectra and light curves of kilonovae
论文作者
论文摘要
我们扩展了先前对兰烷化不渗透率的从头算计算(Fontes等,2020,Mnras,493,4143),包括一组完整的actinide痴呆率,用于在Kilonova Light曲线和光谱的建模中使用。使用配置交流方法生成详细的细胞线路特征。这些actinide的不透明表现出与灯笼质不熟度的趋势相似的趋势,例如在动态喷射中,对于相关条件而产生的较轻的actacinides产生的不透明度高于较重的不透性。在相关温度和密度的网格上,使用了14个Actinide Elements $(89 \ le le Z \ le 102)$ 14(89 \ le le z \ le 102)$的透明度表进行预报的处理。这些表格的混乱将公开用于Kilonova建模中的一般使用。我们通过探索光曲线和光谱对不同的actinide丰度分布的敏感性以及通过不同的核理论预测的不同选择,以及对喷射质量和速度的不同选择,证明了这些缺陷性在Kilonova模拟中的有用性。我们发现对两个考虑的分布的敏感性很小,这表明具有$ z \ ge 99 $的actinides的不透明性并没有强烈贡献。另一方面,发现一个单一的actinide元素protactinium在后期(合并后5-7天)在远红外产生微弱的光谱特征。更普遍的是,我们发现弹出质量和速度的选择对本研究的kN排放效果最显着。
We extend previous ab initio calculations of lanthanide opacities (Fontes et al., 2020, MNRAS, 493, 4143) to include a complete set of actinide opacities for use in the modeling of kilonova light curves and spectra. Detailed, fine-structure line features are generated using the configuration-interaction approach. These actinide opacities display similar trends to those observed for lanthanide opacities, such as the lighter actinides producing higher opacity than the heavier ones for relevant conditions in the dynamical ejecta. A line-binned treatment is employed to pre-compute opacity tables for 14 actinide elements $(89 \le Z \le 102)$ over a grid of relevant temperatures and densities. These tabular opacities will be made publicly available for general usage in kilonova modeling. We demonstrate the usefulness of these opacities in kilonova simulations by exploring the sensitivity of light curves and spectra to different actinide abundance distributions that are predicted by different nuclear theories, as well as to different choices of ejecta mass and velocity. We find very little sensitivity to the two considered distributions, indicating that opacities for actinides with $Z \ge 99$ do not contribute strongly. On the other hand, a single actinide element, protactinium, is found to produce faint spectral features in the far infrared at late times (5-7 days post merger). More generally, we find that the choice of ejecta mass and velocity have the most significant effect on KN emission for this study.