论文标题

Poisson Gauge模型和Seiberg-Witten地图

Poisson gauge models and Seiberg-Witten map

论文作者

Kupriyanov, V. G., Kurkov, M. A., Vitale, P.

论文摘要

完整的非交通量规理论的半经典极限称为Poisson仪表理论。在这项工作中,我们修改了泊松仪理论的构建,以关注所涉及的结构的几何含义并朝着进一步发展的方向发展,包括拟议形式主义的进一步发展,包括衍生成noe的身份和电流的保护。对于任何线性非交换性,$θ^{ab}(x)= f^{ab} _c \,x^c $,带有$ f^{ab} _c $是lie代数的结构常数,该结构是lie代数的结构常数,该代数是lage lagrangian的明确形式。特别地,找到了定义场强的矩阵$ρ$的通用解决方案,并找到了协变量衍生物。从一般公式中回收了先前已知的$κ$ -Minkowski,$λ$ -Minkowski和旋转不变的非交换性的例子。泊松规量规模型的任意性是根据塞伯格(Seiberg-witten)的地图(即可逆场重新定义映射轨迹轨迹映射到量规轨道上的)来解决的。

The semiclassical limit of full non-commutative gauge theory is known as Poisson gauge theory. In this work we revise the construction of Poisson gauge theory paying attention to the geometric meaning of the structures involved and advance in the direction of a further development of the proposed formalism, including the derivation of Noether identities and conservation of currents. For any linear non-commutativity, $Θ^{ab}(x)=f^{ab}_c\,x^c$, with $f^{ab}_c$ being structure constants of a Lie algebra, an explicit form of the gauge Lagrangian is proposed. In particular a universal solution for the matrix $ρ$ defining the field strength and the covariant derivative is found. The previously known examples of $κ$-Minkowski, $λ$-Minkowski and rotationally invariant non-commutativity are recovered from the general formula. The arbitrariness in the construction of Poisson gauge models is addressed in terms of Seiberg-Witten maps, i.e., invertible field redefinitions mapping gauge orbits onto gauge orbits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源