论文标题

挖掘您自己的解剖学:用极有限的标签重新访问医疗图像细分

Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels

论文作者

You, Chenyu, Dai, Weicheng, Liu, Fenglin, Min, Yifei, Dvornek, Nicha C., Li, Xiaoxiao, Clifton, David A., Staib, Lawrence, Duncan, James S.

论文摘要

关于对比学习的最新研究仅通过在医学图像分割的背景下利用很少的标签来实现出色的表现。现有方法主要关注实例歧视和不变映射。但是,他们面临三个常见的陷阱:(1)尾巴:医疗图像数据通常遵循隐式的长尾分配。盲目利用训练中的所有像素会导致数据失衡问题,并导致性能恶化; (2)一致性:尚不清楚分割模型是否由于不同解剖学特征之间的类内变化而学会了有意义但一致的解剖特征; (3)多样性:整个数据集中的切片内相关性的关注明显降低。这促使我们寻求一种有原则的方法来战略利用数据集本身,以发现不同解剖学观点的类似但不同的样本。在本文中,我们介绍了一种新型的半监督2D医学图像分割框架,称其为您自己的解剖结构(MONA),并做出了三个贡献。首先,先前的工作认为,每个像素对模型培训都同样重要。我们从经验上观察到,仅此单单就不太可能定义有意义的解剖特征,这主要是由于缺乏监督信号。我们通过使用更强大的数据增强和最近的邻居展示了学习不断发展的两个简单解决方案。其次,我们构建了一组目标,鼓励模型能够以无监督的方式将医学图像分解为解剖特征的集合。最后,我们从经验和理论上俩都证明了我们的MONA在具有不同标记设置的三个基准数据集上的功效,从而在不同的标签的半固定设置下实现了新的最先进的设置。

Recent studies on contrastive learning have achieved remarkable performance solely by leveraging few labels in the context of medical image segmentation. Existing methods mainly focus on instance discrimination and invariant mapping. However, they face three common pitfalls: (1) tailness: medical image data usually follows an implicit long-tail class distribution. Blindly leveraging all pixels in training hence can lead to the data imbalance issues, and cause deteriorated performance; (2) consistency: it remains unclear whether a segmentation model has learned meaningful and yet consistent anatomical features due to the intra-class variations between different anatomical features; and (3) diversity: the intra-slice correlations within the entire dataset have received significantly less attention. This motivates us to seek a principled approach for strategically making use of the dataset itself to discover similar yet distinct samples from different anatomical views. In this paper, we introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA), and make three contributions. First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features, mainly due to lacking the supervision signal. We show two simple solutions towards learning invariances - through the use of stronger data augmentations and nearest neighbors. Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features in an unsupervised manner. Lastly, we both empirically and theoretically, demonstrate the efficacy of our MONA on three benchmark datasets with different labeled settings, achieving new state-of-the-art under different labeled semi-supervised settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源