论文标题

在平面和外平面图的最大扩展上

On the maximum spread of planar and outerplanar graphs

论文作者

Li, Zelong, Linz, William, Lu, Linyuan, Wang, Zhiyu

论文摘要

图$ g $的传播是$ g $的邻接矩阵的最大和最小特征值之间的差异。 Gotshall,O'Brien和Tait猜想,对于足够大的$ n $,$ n $ vertex Outerplanar图具有最大差异是通过将顶点连接到$ n-1 $顶点的路径获得的图形。在本文中,我们通过证明极端图是通过将顶点连接到$ \ lceil(2n-1)/3 \ rceil $ vertices和$ \ lfloor(n-2)/3 \ rfloor $隔离的pertices获得的路径来反驳这一猜想的。对于平面图,我们表明,达到最大差异的极端$ n $ vertex平面图是通过将两个非附在顶点连接到$ \ lceil(2n-2)/3 \ rceil $ debertices和$ \ lfloor(n-4)/3 \ rfloor $隔离的Vertices上获得的图形。

The spread of a graph $G$ is the difference between the largest and smallest eigenvalue of the adjacency matrix of $G$. Gotshall, O'Brien and Tait conjectured that for sufficiently large $n$, the $n$-vertex outerplanar graph with maximum spread is the graph obtained by joining a vertex to a path on $n-1$ vertices. In this paper, we disprove this conjecture by showing that the extremal graph is the graph obtained by joining a vertex to a path on $\lceil (2n-1)/3\rceil$ vertices and $\lfloor(n-2)/3\rfloor$ isolated vertices. For planar graphs, we show that the extremal $n$-vertex planar graph attaining the maximum spread is the graph obtained by joining two nonadjacent vertices to a path on $\lceil(2n-2)/3\rceil$ vertices and $\lfloor(n-4)/3\rfloor$ isolated vertices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源