论文标题

数据驱动的儿童互动评估

Data-driven Parsing Evaluation for Child-Parent Interactions

论文作者

Liu, Zoey, Prud'hommeaux, Emily

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We present a syntactic dependency treebank for naturalistic child and child-directed speech in English (MacWhinney, 2000). Our annotations largely followed the guidelines of the Universal Dependencies project (UD (Zeman et al., 2022)), with detailed extensions to lexical/syntactic structures unique to conversational speech (in opposition to written texts). Compared to existing UD-style spoken treebanks as well as other dependency corpora of child-parent interactions specifically, our dataset is of (much) larger size (N of utterances = 44,744; N of words = 233, 907) and contains speech from a total of 10 children covering a wide age range (18-66 months). With this dataset, we ask: (1) How well would state-of-the-art dependency parsers, tailored for the written domain, perform for speech of different interlocutors in spontaneous conversations? (2) What is the relationship between parser performance and the developmental stage of the child? To address these questions, in ongoing work, we are conducting thorough dependency parser evaluations using both graph-based and transition-based parsers with different hyperparameterization, trained from three different types of out-of-domain written texts: news, tweets, and learner data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源