论文标题
部分可观测时空混沌系统的无模型预测
A Parameter-free Nonconvex Low-rank Tensor Completion Model for Spatiotemporal Traffic Data Recovery
论文作者
论文摘要
流量数据长期遭受缺失和腐败的困扰,从而导致随后的智能运输系统(ITS)应用程序的准确性和效用降低。注意到流量数据固有的低级属性,许多研究将缺少的流量数据恢复为低级张量完成(LRTC)问题。由于LRTC中秩最小化的非跨性别性和离散性,现有方法要么用与等级函数相当遥远的凸代替代物代替了等级,要么用涉及许多参数的非convex替代物代替级别的替代品。在这项研究中,我们提出了一个用于交通数据恢复的无参数的非凸张量完成模型(TC-PFNC),其中设计了基于日志的放松项以近似张量代数级别。此外,以前的研究通常认为观察结果是可靠的,没有任何异常值。因此,我们通过对潜在的流量数据异常值进行建模,将TC-PFNC扩展到了强大的版本(RTC-PFNC),该数据可以从部分和损坏的观测值中恢复缺失的值并在观测中删除异常。 TC-PFNC和RTC-PFNC的数值解根据交替方向乘数法(ADMM)进行了详细阐述。在四个现实世界流量数据集上进行的广泛实验结果表明,所提出的方法在缺失和损坏的数据恢复中都优于其他最新方法。本文中使用的代码可在以下网址获得:https://github.com/younghe49/t-ITSPFNC。
Traffic data chronically suffer from missing and corruption, leading to accuracy and utility reduction in subsequent Intelligent Transportation System (ITS) applications. Noticing the inherent low-rank property of traffic data, numerous studies formulated missing traffic data recovery as a low-rank tensor completion (LRTC) problem. Due to the non-convexity and discreteness of the rank minimization in LRTC, existing methods either replaced rank with convex surrogates that are quite far away from the rank function or approximated rank with nonconvex surrogates involving many parameters. In this study, we proposed a Parameter-Free Non-Convex Tensor Completion model (TC-PFNC) for traffic data recovery, in which a log-based relaxation term was designed to approximate tensor algebraic rank. Moreover, previous studies usually assumed the observations are reliable without any outliers. Therefore, we extended the TC-PFNC to a robust version (RTC-PFNC) by modeling potential traffic data outliers, which can recover the missing value from partial and corrupted observations and remove the anomalies in observations. The numerical solutions of TC-PFNC and RTC-PFNC were elaborated based on the alternating direction multiplier method (ADMM). The extensive experimental results conducted on four real-world traffic data sets demonstrated that the proposed methods outperform other state-of-the-art methods in both missing and corrupted data recovery. The code used in this paper is available at: https://github.com/YoungHe49/T-ITSPFNC.