论文标题
$ \ Mathcal {n} = 1 $超对称Yang-Mills理论的超流动性的非扰动重新归一化
Nonperturbative renormalization of the supercurrent in $\mathcal{N} = 1$ Supersymmetric Yang-Mills Theory
论文作者
论文摘要
在这项工作中,我们使用量规范的重新分配方案(GIRS)研究了$ \ Mathcal {n} = 1 $ supersymmetric yang-mills(sym)理论的超流动运算符的非扰动重新归一化。所提出的处方成功地解决了超电流与其他相等或较低维度的运算符的不必要的混合,这尊重相同的全局对称性。这种混合是通过晶格上超对称性的不可避免的破裂引入的。在GIRS中,所有量规非算子与超电流混合的运算符被排除在重新归一化过程之外。剩余的混合操作员可以通过数值模拟访问。我们提出了使用GIRS方案对超流量重新归一化的结果。我们还按单循环订购了转换矩阵,该转换矩阵将GIR中的非扰动重归化因子与参考方案$ \ bar {\ rm MS} $相关联。
In this work, we study the nonperturbative renormalization of the supercurrent operator in $\mathcal{N} = 1$ Supersymmetric Yang-Mills (SYM) theory, using a gauge-invariant renormalization scheme (GIRS). The proposed prescription addresses successfully the unwanted mixing of the supercurrent with other operators of equal or lower dimension, which respect the same global symmetries. This mixing is introduced by the unavoidable breaking of supersymmetry on the lattice. In GIRS all gauge-noninvariant operators, which mix with the supercurrent, are excluded from the renormalization procedure. The one remaining mixing operator is accessible by numerical simulations. We present results for the renormalization of the supercurrent using a GIRS scheme. We also compute at one-loop order the conversion matrix which relates the nonperturbative renormalization factors in GIRS to the reference scheme $\bar{\rm MS}$.