论文标题

部分可观测时空混沌系统的无模型预测

Audio Classification with Skyrmion Reservoirs

论文作者

Msiska, Robin, Love, Jake, Mulkers, Jeroen, Leliaert, Jonathan, Everschor-Sitte, Karin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Physical reservoir computing is a computational paradigm that enables spatio-temporal pattern recognition to be performed directly in matter. The use of physical matter leads the way towards energy-efficient devices capable of solving machine learning problems without having to build a system of millions of interconnected neurons. We propose a high performance "skyrmion mixture reservoir" that implements the reservoir computing model with multi-dimensional inputs. We show that our implementation solves spoken digit classification tasks at the nanosecond timescale, with an overall model accuracy of 97.4% and a less that 1% word error rate; the best performance ever reported for in-materio reservoir computers. Due to the quality of the results and the low power properties of magnetic texture reservoirs, we argue that skyrmion fabrics are a compelling candidate for reservoir computing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源