论文标题

网络推理结合相互信息率和统计测试

Network inference combining mutual information rate and statistical tests

论文作者

Antonopoulos, Chris G.

论文摘要

在本文中,我们提出了一种结合信息理论和统计方法,使用时间序列数据推断复杂网络中的连接性。该方法基于对成对的时间序列的相互信息率的估计以及使用错误的发现率方法进行多个假设检验的统计显着性测试。我们提供有关共同信息率的数学背景,讨论统计显着性测试和错误的发现率。此外,我们介绍了相关的正常变化数据,耦合圆和耦合的逻辑图,耦合的洛伦兹系统和耦合随机库拉莫托相振荡器的结果。之后,我们研究了噪声对耦合随机kuramoto相振荡器网络中提出的方法的影响,以及耦合异质性度对耦合圆形图网络的影响。我们表明该方法可以通过接收器操作特征曲线来推断连接节点的正确数字和对。在更现实的随机数据情况下,我们证明了其推断初始连接矩阵结构的能力。该方法还显示了恢复ERDőS-Rényi和小世界网络节点上动态的初始连接矩阵,其连接中具有不同的耦合异质性。提出的方法的亮点是它仅基于记录的数据集推断基础网络连接的能力。

In this paper, we present a method that combines information-theoretical and statistical approaches to infer connectivity in complex networks using time-series data. The method is based on estimations of the Mutual Information Rate for pairs of time-series and on statistical significance tests for connectivity acceptance using the false discovery rate method for multiple hypothesis testing. We provide the mathematical background on Mutual Information Rate, discuss the statistical significance tests and the false discovery rate. Further on, we present results for correlated normal-variates data, coupled circle and coupled logistic maps, coupled Lorenz systems and coupled stochastic Kuramoto phase oscillators. Following up, we study the effect of noise on the presented methodology in networks of coupled stochastic Kuramoto phase oscillators and of coupling heterogeneity degree on networks of coupled circle maps. We show that the method can infer the correct number and pairs of connected nodes, by means of receiver operating characteristic curves. In the more realistic case of stochastic data, we demonstrate its ability to infer the structure of the initial connectivity matrices. The method is also shown to recover the initial connectivity matrices for dynamics on the nodes of Erdős-Rényi and small-world networks with varying coupling heterogeneity in their connections. The highlight of the proposed methodology is its ability to infer the underlying network connectivity based solely on the recorded datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源