论文标题
用数值辐射转移代码第1部分测试盐近似值:有效性和适用性
Testing SALT Approximations with Numerical Radiation Transfer Code Part 1: Validity and Applicability
论文作者
论文摘要
吸收线光谱学提供了限制银河流出特性和环境培养基环境的最佳机会之一。但是,从线轮廓中提取物理信息很困难,但是,对于基础辐射转移的物理学而言,很难复杂,取决于许多不同的参数。理想化的分析模型对于有效地约束大参数空间是必要的,但通常会受到模型退化和系统误差的困扰。与理想化的数值辐射转移代码的比较测试为面对这两个问题提供了绝佳的机会。在本文中,我们介绍了盐(用于预测银河流出的UV光谱的分析辐射转移模型)与数值辐射传递软件Rascas之间的详细比较。我们的分析已导致对这两个模型的升级,包括改善盐的推导以及Rascas的可定制的自适应网状精炼常规。我们探索盐与蒙特卡洛拟合程序配对时的盐分如何可以从非扰动和湍流流中恢复流程参数。当排除速度和密度梯度时,我们发现流程参数是从高分辨率(20 $ \ rm {km} $ $ \ rm {s}^{ - 1} $)数据中恢复的,并且从中等分辨率(100 $ \ rm {kmm} $ {km} $ \ rm \ rm \ rm { 10,而派生的数量(例如,质量流出速率,色谱柱密度等)在所有分辨率上都得到了很好的回收。在湍流情况下,在单个参数的恢复中出现了偏差,但衍生的数量仍然可以很好地恢复。
Absorption line spectroscopy offers one of the best opportunities to constrain the properties of galactic outflows and the environment of the circumgalactic medium. Extracting physical information from line profiles is difficult, however, for the physics governing the underlying radiation transfer is complicated and depends on many different parameters. Idealized analytical models are necessary to constrain the large parameter spaces efficiently, but are typically plagued by model degeneracy and systematic errors. Comparison tests with idealized numerical radiation transfer codes offer an excellent opportunity to confront both of these issues. In this paper, we present a detailed comparison between SALT, an analytical radiation transfer model for predicting UV spectra of galactic outflows, with the numerical radiation transfer software, RASCAS. Our analysis has lead to upgrades to both models including an improved derivation of SALT and a customizable adaptive mesh refinement routine for RASCAS. We explore how well SALT, when paired with a Monte Carlo fitting procedure, can recover flow parameters from non-turbulent and turbulent flows. When the velocity and density gradients are excluded, we find that flow parameters are well recovered from high resolution (20 $\rm{km}$ $\rm{s}^{-1}$) data and moderately well from medium resolution (100 $\rm{km}$ $\rm{s}^{-1}$) data without turbulence at a S/N = 10, while derived quantities (e.g., mass outflow rates, column density, etc.) are well recovered at all resolutions. In the turbulent case, biased errors emerge in the recovery of individual parameters, but derived quantities are still well recovered.