论文标题

通过动量网络进行息肉细分的在线伪标签

Online pseudo labeling for polyp segmentation with momentum networks

论文作者

Van, Toan Pham, Doan, Linh Bao, Nguyen, Thanh Tung, Tran, Duc Trung, Van Nguyen, Quan, Sang, Dinh Viet

论文摘要

语义分割是开发医学图像诊断系统的重要任务。但是,构建注释的医疗数据集很昂贵。因此,在这种情况下,半监督方法很重要。在半监督学习中,标签的质量在模型性能中起着至关重要的作用。在这项工作中,我们提出了一种新的伪标签策略,可提高用于培训学生网络的伪标签的质量。我们遵循多阶段的半监督训练方法,该方法在标记的数据集上训练教师模型,然后使用训练有素的老师渲染伪标签进行学生培训。通过这样做,随着培训的进度,伪标签将被更新,更精确。上一个和我们的方法之间的关键区别在于,我们在学生培训过程中更新教师模型。因此,在学生培训过程中,提高了伪标签的质量。我们还提出了一种简单但有效的策略,以使用动量模型来提高伪标签的质量 - 训练过程中原始模型的慢复制版本。通过应用动量模型与学生培训期间的重新渲染伪标签相结合,我们在五个数据集中平均达到了84.1%的骰子得分(即Kvarsir,CVC-ClinicdB,Etis-laribpolypdb,CVC-ColondB,CVC-ColondB,和CVC-300),仅使用20%的LABED数据。我们的结果超过了3%的共同实践,甚至在某些数据集中取得了完全监督的结果。我们的源代码和预培训模型可在https://github.com/sun-asterisk-research/online学习SSL上找到

Semantic segmentation is an essential task in developing medical image diagnosis systems. However, building an annotated medical dataset is expensive. Thus, semi-supervised methods are significant in this circumstance. In semi-supervised learning, the quality of labels plays a crucial role in model performance. In this work, we present a new pseudo labeling strategy that enhances the quality of pseudo labels used for training student networks. We follow the multi-stage semi-supervised training approach, which trains a teacher model on a labeled dataset and then uses the trained teacher to render pseudo labels for student training. By doing so, the pseudo labels will be updated and more precise as training progress. The key difference between previous and our methods is that we update the teacher model during the student training process. So the quality of pseudo labels is improved during the student training process. We also propose a simple but effective strategy to enhance the quality of pseudo labels using a momentum model -- a slow copy version of the original model during training. By applying the momentum model combined with re-rendering pseudo labels during student training, we achieved an average of 84.1% Dice Score on five datasets (i.e., Kvarsir, CVC-ClinicDB, ETIS-LaribPolypDB, CVC-ColonDB, and CVC-300) with only 20% of the dataset used as labeled data. Our results surpass common practice by 3% and even approach fully-supervised results on some datasets. Our source code and pre-trained models are available at https://github.com/sun-asterisk-research/online learning ssl

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源