论文标题

多模光子晶体中的Ultrastrong轻质物质相互作用

Ultrastrong light-matter interaction in a multimode photonic crystal

论文作者

Vrajitoarea, Andrei, Belyansky, Ron, Lundgren, Rex, Whitsitt, Seth, Gorshkov, Alexey V., Houck, Andrew A.

论文摘要

利用量子水平的光与物质之间的相互作用一直是原子理和量子光学器件的中心主题,从量子计算到量子计量学的应用。将复杂的相互作用与光子合成材料相结合,为研究新颖的量子相和现象提供了机会,建立了与凝结物理物理学的有趣联系。在这里,我们探索了多体现象,其单个人工原子耦合到光子晶体的许多离散模式。该实验通过将高度非线性的磁通量子置与微波炉谐振器的紧密结合晶格进行循环耦合,使用电路量子电动力学范式到达Ultrastrong轻质耦合方案。在这个制度中,由于多光子结合状态的强烈参与是由于破坏粒子数量保护的相互作用,因此单个光子的运输成为一个多体问题。利用量子介导的有效光子 - 光子相互作用,多个光子的传输导致复杂的多模动力学,可用于生成强相关光子的连续储层,这是量子网络的重要资源。这项工作为在单光子水平探索非线性量子光学元件并稳定光的多体阶段探索了令人兴奋的前景。

Harnessing the interaction between light and matter at the quantum level has been a central theme in atomic physics and quantum optics, with applications from quantum computation to quantum metrology. Combining complex interactions with photonic synthetic materials provides an opportunity to investigate novel quantum phases and phenomena, establishing interesting connections to condensed matter physics. Here we explore many-body phenomena with a single artificial atom coupled to the many discrete modes of a photonic crystal. This experiment reaches the ultrastrong light-matter coupling regime using the circuit quantum electrodynamics paradigm, by galvanically coupling a highly nonlinear fluxonium qubit to a tight-binding lattice of microwave resonators. In this regime, the transport of a single photon becomes a many-body problem, owing to the strong participation of multi-photon bound states arising from interactions that break particle number conservation. Exploiting the effective photon-photon interactions mediated by the qubit, the transport of multiple photons leads to complex multimode dynamics that can be employed for generating a continuous reservoir of strongly-correlated photons, an important resource for quantum networks. This work opens exciting prospects for exploring nonlinear quantum optics at the single-photon level and stabilizing entangled many-body phases of light.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源