论文标题
基于模仿学习的控制政策的基准比较自动赛车
A Benchmark Comparison of Imitation Learning-based Control Policies for Autonomous Racing
论文作者
论文摘要
用缩放赛车的自动赛车越来越多地引起人们的关注,这是开发感知,计划和控制算法的有效方法,以在车辆处理的范围内进行安全自动驾驶。为了培训敏捷控制政策以进行自主赛车,基于学习的方法在很大程度上利用了强化学习,尽管结果好坏参半。在这项研究中,我们为直接应用或用于在模拟和缩放现实世界环境中进行引导增强学习的赛车工具进行了多种模仿学习政策。我们表明,交互式模仿学习技术优于传统的模仿学习方法,并且可以通过引导效率提高样本效率,从而大大提高强化学习政策的性能。我们的基准为使用模仿学习和强化学习的自主赛车研究为未来的研究奠定了基础。
Autonomous racing with scaled race cars has gained increasing attention as an effective approach for developing perception, planning and control algorithms for safe autonomous driving at the limits of the vehicle's handling. To train agile control policies for autonomous racing, learning-based approaches largely utilize reinforcement learning, albeit with mixed results. In this study, we benchmark a variety of imitation learning policies for racing vehicles that are applied directly or for bootstrapping reinforcement learning both in simulation and on scaled real-world environments. We show that interactive imitation learning techniques outperform traditional imitation learning methods and can greatly improve the performance of reinforcement learning policies by bootstrapping thanks to its better sample efficiency. Our benchmarks provide a foundation for future research on autonomous racing using Imitation Learning and Reinforcement Learning.