论文标题

SCI:生物医学数据的频谱浓缩隐式神经压缩

SCI: A Spectrum Concentrated Implicit Neural Compression for Biomedical Data

论文作者

Yang, Runzhao, Xiao, Tingxiong, Cheng, Yuxiao, Cao, Qianni, Qu, Jinyuan, Suo, Jinli, Dai, Qionghai

论文摘要

生物医学数据的大量收集和爆炸性增长,需要有效的压缩以有效的存储,传输和共享。广泛研究了随时可用的视觉数据压缩技术,但针对自然图像/视频进行了量身定制,因此在具有不同特征和较大多样性的生物医学数据上显示出有限的性能。新兴的隐式神经表示(INR)正在获得动力,并表现出很高的希望,可以以目标数据为特定的方式拟合多种视觉数据,但是涵盖多种生物医学数据的一般压缩方案尚无。为了解决这个问题,我们首先得出了INR频谱浓度属性的数学解释,以及对基于INR的压缩机设计的分析见解。此外,我们提出了一个频谱浓缩隐式神经压缩(SCI),该频谱将复杂的生物医学数据自适应地划分为匹配INR浓缩频谱信封的块,并设计一个能够用少量参数代表每个块的漏斗形神经网络。基于此设计,我们通过在给定预算下通过优化进行压缩,并分配具有很高表示准确性的可用参数。该实验表明,SCI的性能优于最先进的方法,包括商业压缩机,数据驱动的方法和基于INR的生物医学数据的对应物。源代码可以在https://github.com/richealyoung/impliticnalcompression.git上找到。

Massive collection and explosive growth of biomedical data, demands effective compression for efficient storage, transmission and sharing. Readily available visual data compression techniques have been studied extensively but tailored for natural images/videos, and thus show limited performance on biomedical data which are of different features and larger diversity. Emerging implicit neural representation (INR) is gaining momentum and demonstrates high promise for fitting diverse visual data in target-data-specific manner, but a general compression scheme covering diverse biomedical data is so far absent. To address this issue, we firstly derive a mathematical explanation for INR's spectrum concentration property and an analytical insight on the design of INR based compressor. Further, we propose a Spectrum Concentrated Implicit neural compression (SCI) which adaptively partitions the complex biomedical data into blocks matching INR's concentrated spectrum envelop, and design a funnel shaped neural network capable of representing each block with a small number of parameters. Based on this design, we conduct compression via optimization under given budget and allocate the available parameters with high representation accuracy. The experiments show SCI's superior performance to state-of-the-art methods including commercial compressors, data-driven ones, and INR based counterparts on diverse biomedical data. The source code can be found at https://github.com/RichealYoung/ImplicitNeuralCompression.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源