论文标题

可解释的审查学习:寻找具有长期预后价值的关键特征以生存预测

Explainable Censored Learning: Finding Critical Features with Long Term Prognostic Values for Survival Prediction

论文作者

Wu, Xinxing, Peng, Chong, Charnigo, Richard, Cheng, Qiang

论文摘要

解释与生存时间相关的复杂生物学过程中涉及的关键变量可以帮助您了解生存模型的预测,评估治疗疗效并开发针对患者的新疗法。当前,基于深度学习(DL)模型的预测结果比标准生存方法更好或良好,由于缺乏透明度和很少的可解释性,它们通常被忽视,这对于它们在临床应用中的采用至关重要。在本文中,我们介绍了一种可解释的审查学习(Excel)的新颖,易于部署的方法,以迭代利用关键变量并同时实施基于这些变量的模型培训(DL)模型培训。首先,在玩具数据集上,我们说明了Excel的原理;然后,我们数学分析了我们的提出方法,并得出并证明并证明了严格的概括误差范围。接下来,在两个半合成数据集中,我们表明Excel具有良好的反噪声能力和稳定性。最后,我们将Excel应用于各种现实世界中的生存数据集,包括临床数据和遗传数据,表明Excel可以有效地识别关键特征并与原始模型相比或更高的性能。值得指出的是,在正确审查的情况下,在现有或新兴模型中灵活部署了可解释的生存数据。

Interpreting critical variables involved in complex biological processes related to survival time can help understand prediction from survival models, evaluate treatment efficacy, and develop new therapies for patients. Currently, the predictive results of deep learning (DL)-based models are better than or as good as standard survival methods, they are often disregarded because of their lack of transparency and little interpretability, which is crucial to their adoption in clinical applications. In this paper, we introduce a novel, easily deployable approach, called EXplainable CEnsored Learning (EXCEL), to iteratively exploit critical variables and simultaneously implement (DL) model training based on these variables. First, on a toy dataset, we illustrate the principle of EXCEL; then, we mathematically analyze our proposed method, and we derive and prove tight generalization error bounds; next, on two semi-synthetic datasets, we show that EXCEL has good anti-noise ability and stability; finally, we apply EXCEL to a variety of real-world survival datasets including clinical data and genetic data, demonstrating that EXCEL can effectively identify critical features and achieve performance on par with or better than the original models. It is worth pointing out that EXCEL is flexibly deployed in existing or emerging models for explainable survival data in the presence of right censoring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源