论文标题

D-Align:基于多帧点云序列的3D对象检测的双查询共同注意网络

D-Align: Dual Query Co-attention Network for 3D Object Detection Based on Multi-frame Point Cloud Sequence

论文作者

Lee, Junhyung, Koh, Junho, Lee, Youngwoo, Choi, Jun Won

论文摘要

激光雷达传感器广泛用于在各种移动机器人应用中的3D对象检测。 LIDAR传感器会实时连续生成点云数据。常规3D对象检测器使用在固定持续时间内获取的一组点检测对象。但是,最近的研究表明,可以通过利用从点云序列获得的时空信息来进一步增强对象检测的性能。在本文中,我们提出了一个名为D-Align的新的3D对象检测器,该检测器可以通过对齐和汇总从点集序列获得的功能来有效地产生强鸟的视图(BEV)特征。提出的方法包括一个新颖的双疑问共同发音网络,该网络使用两种类型的查询,包括目标查询集(T-QS)和支持查询集(S-QS),分别更新目标和支持框架的功能。 D-Align基于从相邻特征图中提取的时间上下文特征将S-Q与T-QS对齐,然后使用门控注意机制将S-Q与T-Q汇总。双重查询通过多个注意层进行更新,以逐步增强用于产生检测结果的目标框架特征。我们在Nuscenes数据集上进行的实验表明,提出的D-Align方法极大地提高了基于单帧的基线方法的性能,并显着优于最新的3D对象检测器。

LiDAR sensors are widely used for 3D object detection in various mobile robotics applications. LiDAR sensors continuously generate point cloud data in real-time. Conventional 3D object detectors detect objects using a set of points acquired over a fixed duration. However, recent studies have shown that the performance of object detection can be further enhanced by utilizing spatio-temporal information obtained from point cloud sequences. In this paper, we propose a new 3D object detector, named D-Align, which can effectively produce strong bird's-eye-view (BEV) features by aligning and aggregating the features obtained from a sequence of point sets. The proposed method includes a novel dual-query co-attention network that uses two types of queries, including target query set (T-QS) and support query set (S-QS), to update the features of target and support frames, respectively. D-Align aligns S-QS to T-QS based on the temporal context features extracted from the adjacent feature maps and then aggregates S-QS with T-QS using a gated attention mechanism. The dual queries are updated through multiple attention layers to progressively enhance the target frame features used to produce the detection results. Our experiments on the nuScenes dataset show that the proposed D-Align method greatly improved the performance of a single frame-based baseline method and significantly outperformed the latest 3D object detectors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源