论文标题

部分可观测时空混沌系统的无模型预测

A Novel Power-Band based Data Segmentation Method for Enhancing Meter Phase and Transformer-Meter Pairing Identification

论文作者

Lee, Han Pyo, Rehm, PJ, Makdad, Matthew, Miller, Edmond, Lu, Ning

论文摘要

本文提出了一种新型的基于功率波段的数据分割(PBD)方法,以增强仪表相和仪表转换器配对的识别。共享相同变压器或处于同一阶段的仪表通常表现出密切相关的电压曲线。但是,在高功耗下,将客户连接到分销变压器的线路可能会有大量的电压下降。这些电压下降大大降低了同一阶段或由同一变压器提供的仪表之间的相关性,从而导致较高的错误识别率。为了解决这个问题,我们建议使用功率频段选择用于计算相关性的高度相关电压段,而不是仅依靠从整个电压波形计算的相关性。该算法的性能是通过使用从13个公用事业馈线收集的数据进行测试来评估的。为了确保识别结果的可信度,公用事业工程师对所有13个馈线进行现场验证。验证结果明确地表明,所提出的算法在准确性和鲁棒性方面都超过了现有方法。

This paper presents a novel power-band-based data segmentation (PBDS) method to enhance the identification of meter phase and meter-transformer pairing. Meters that share the same transformer or are on the same phase typically exhibit strongly correlated voltage profiles. However, under high power consumption, there can be significant voltage drops along the line connecting a customer to the distribution transformer. These voltage drops significantly decrease the correlations among meters on the same phase or supplied by the same transformer, resulting in high misidentification rates. To address this issue, we propose using power bands to select highly correlated voltage segments for computing correlations, rather than relying solely on correlations computed from the entire voltage waveforms. The algorithm's performance is assessed by conducting tests using data gathered from 13 utility feeders. To ensure the credibility of the identification results, utility engineers conduct field verification for all 13 feeders. The verification results unequivocally demonstrate that the proposed algorithm surpasses existing methods in both accuracy and robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源