论文标题

磁层积聚中的离心屏障

Centrifugal barriers in magnetospheric accretion

论文作者

Lyutikov, Maxim

论文摘要

我们重新考虑积聚流向磁化中心恒星的动力学。对于磁性磁性对齐的情况,离心屏障为$ r_ {cb} =(2/3)^{1/3} r_c = 0.87 r_c $,其中$ r_c =(g m/ω^2)对于倾斜偶极子,从旋转半径$ r_c $的倾斜直接积聚,仅对于满足$ \tanθ_μ\ geq 1/(2 \ sqrt {3})$($θ_μ\ geq q q q Q Q Q Q 16.1^\ Circ $)的磁性斜率才有可能。积聚以漏斗流的形式进行 - 沿着$μ -ω$平面的两个流,具有方位角开口角$ \ cos(δϕ)= {\ cot^ 2 {θ_μ}}}/{12} $。对于因磁磁盘扭曲的磁层而言,离心屏障的半径均为$ r_ {cb} = 0.719 r_c $,用于完全限制的偶极子,扩展到$ r_ {cb} \ sim r_c $ r_c $ r_c $ r_c $用于磁性平衡的情况。 II型X射线在积聚中子星中可能由离心屏障介导。这需要几乎对齐配置。被困在磁层中的离心箱材料可能会导致宿主恒星的光曲线中的周期性遮挡(“ DIPS”),例如,在积聚年轻的恒星物体和X射线二进制物中观察到的那样。

We reconsider the dynamics of accretion flows onto magnetized central star. For dipolar magnetically aligned case, the centrifugal barrier is at $R_{cb} = (2/3)^{1/3} R_c = 0.87 R_c$, where $R_c= ( G M/Ω^2)^{1/3}$ is the corotation radius. For oblique dipole direct accretion from the corotation radius $R_c$ is possible only for magnetic obliquity satisfying $\tan θ_μ\geq 1/( 2 \sqrt{3}) $ ($θ_μ\geq 16.1^\circ $). The accretion proceeds in a form of funnel flows - along two streams centered on the $μ-Ω$ plane, with azimuthal opening angle $ \cos (Δϕ) = { \cot^ 2 {θ_μ} }/{12} $. For the magnetosphere distorted by the diamagnetic disk, the centrifugal barrier can be at as small radius as $R_{cb}= 0.719 R_c$ for the fully confined dipole, extending out to $R_{cb} \sim R_c$ for the magnetically balanced case. Type-II X-ray bursts in accreting neutron stars may be mediated by the centrifugal barrier; this requires nearly aligned configuration. Centrifugally-barriered material trapped in the magnetosphere may lead to periodic obscuration ("dips") in the light curve of the host star, e.g., as observed in accreting young stellar objects and X-ray binaries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源