论文标题
NERF:3D视觉中的神经辐射领域:全面评论(更新后的高斯分裂)
NeRF: Neural Radiance Field in 3D Vision: A Comprehensive Review (Updated Post-Gaussian Splatting)
论文作者
论文摘要
2020年3月,神经辐射场(NERF)彻底改变了计算机视觉,从而允许隐式,基于神经网络的场景表示和新颖的视图综合。 NERF模型在机器人技术,城市映射,自动导航,虚拟现实/增强现实等方面发现了各种应用。 2023年8月,提出了直接的基于NERF的框架的直接竞争者高斯(Gaussian)脱落,并获得了巨大的动力,并以兴趣作为新视图合成的主要框架而超过了基于NERF的研究。我们对过去五年(2020-2025)的NERF论文进行了全面调查。其中包括高斯前拆分时代的论文,其中Nerf主导了新的视图综合和3D隐式和混合表示神经领域学习的领域。我们还包括后高斯分裂时代的作品,在该时代,NERF和隐式/混合神经领域发现了更多的利基应用。 我们的调查被组织为高斯前分裂时代的建筑和基于应用程序的分类法,以及对NERF,神经领域和隐式/混合神经代表方法的主动研究领域进行分类。我们通过可区分的量渲染来介绍NERF及其培训的理论。我们还介绍了经典NERF,隐式和混合神经表示以及神经场模型的性能和速度的基准比较,以及关键数据集的概述。
In March 2020, Neural Radiance Field (NeRF) revolutionized Computer Vision, allowing for implicit, neural network-based scene representation and novel view synthesis. NeRF models have found diverse applications in robotics, urban mapping, autonomous navigation, virtual reality/augmented reality, and more. In August 2023, Gaussian Splatting, a direct competitor to the NeRF-based framework, was proposed, gaining tremendous momentum and overtaking NeRF-based research in terms of interest as the dominant framework for novel view synthesis. We present a comprehensive survey of NeRF papers from the past five years (2020-2025). These include papers from the pre-Gaussian Splatting era, where NeRF dominated the field for novel view synthesis and 3D implicit and hybrid representation neural field learning. We also include works from the post-Gaussian Splatting era where NeRF and implicit/hybrid neural fields found more niche applications. Our survey is organized into architecture and application-based taxonomies in the pre-Gaussian Splatting era, as well as a categorization of active research areas for NeRF, neural field, and implicit/hybrid neural representation methods. We provide an introduction to the theory of NeRF and its training via differentiable volume rendering. We also present a benchmark comparison of the performance and speed of classical NeRF, implicit and hybrid neural representation, and neural field models, and an overview of key datasets.