论文标题

近米前代数:M理论的Cartan微积分

Pre-Metric-Bourbaki Algebroids: Cartan Calculus for M-Theory

论文作者

Çatal-Özer, Aybike, Dereli, Tekin, Doğan, Keremcan

论文摘要

字符串和M理论似乎需要对差异几何形状的常规概念进行概括。这种概括通常涉及将切线束扩展到配备各种代数结构的较大矢量捆绑包。最通用的几何方案尚不清楚,并且需要用于此类代数结构的统一框架。我们在本文中的目的是提出这样的一般框架。我们的策略是遵循定义公理的层次结构:courant代数:几乎是托管 - 衡量标准 - 顾客 - 库兰特。特别是,我们专注于支架和度量不变性属性的对称部分,并尝试以尽可能一般的方式理解它们。这些想法使我们定义了新的代数结构,我们将bourbaki和公制的代数代数为代数。对于精确的近米前代数质体的特殊情况,我们构造了图,该图概括了外部衍生物,谎言衍生物和内部产物的cartan演算。这是通过对确切库兰代数的Severa分类的反向数学分析来完成的。抽象这些地图的关键特性,我们定义了布尔巴基前盘的概念。相反,鉴于布尔巴基预贴库,我们构建了一个预先的 - 布尔巴基代数,其标准支架类似于Dorfman括号。我们证明,满足某些条件的任何确切的近米前孔子代数都必须具有标准支架的扭曲版本的支架。我们证明,文献中的许多代数是这些新代数的例子。可以通过用Lie代数A替换切线束的直接概括。此步骤使我们能够定义A-Bourbaki代数和Bourbaki A-Pre-Calculus,并扩展我们的结果,同时证明从文献中融入此框架中的许多其他代数。

String and M theories seem to require generalizations of usual notions of differential geometry. Such generalizations usually involve extending the tangent bundle to larger vector bundles equipped with various algebroid structures. The most general geometric scheme is not well understood yet, and a unifying framework for such algebroid structures is needed. Our aim in this paper is to propose such a general framework. Our strategy is to follow the hierarchy of defining axioms for a Courant algebroid: almost-Courant - metric - pre-Courant - Courant. In particular, we focus on the symmetric part of the bracket and the metric invariance property, and try to make sense of them in a manner as general as possible. These ideas lead us to define new algebroid structures which we dub Bourbaki and metric-Bourbaki algebroids. For a special case of exact pre-metric-Bourbaki algebroids, we construct maps which generalize the Cartan calculus of exterior derivative, Lie derivative and interior product. This is done by a reverse-mathematical analysis of Severa classification of exact Courant algebroids. Abstracting crucial properties of these maps, we define the notion of Bourbaki pre-calculus. Conversely, given a Bourbaki pre-calculus, we construct a pre-metric-Bourbaki algebroid with a standard bracket analogous to Dorfman bracket. We prove that any exact pre-metric-Bourbaki algebroid satisfying certain conditions has to have a bracket that is the twisted version of the standard bracket. We prove that many algebroids from the literature are examples of these new algebroids. One straightforward generalization of our constructions might be done by replacing the tangent bundle with a Lie algebroid A. This step allows us to define A-Bourbaki algebroids and Bourbaki A-pre-calculus, and extend our results, while proving many other algebroids from the literature fit into this framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源