论文标题

统一分类的全面累积和主要标准的完全积极性

Complete Positivity of Comultiplication and Primary Criteria for Unitary Categorification

论文作者

Huang, Linzhe, Liu, Zhengwei, Palcoux, Sebastien, Wu, Jinsong

论文摘要

在本文中,我们研究了子因子和单一融合类别的量子傅立叶分析。我们证明了对子因子的共同授权的完全积极性,并得出了多率环的单一分类的主要$ n $ criterion。当$ n \ geq3 $时,它比Schur产品标准强。主要标准可以转换为各种标准,即使对于非交通,高级,高级,多率的多率环也更容易在实践中检查。更重要的是,主要标准可以定位在稀疏集中,因此它适用于具有稀疏已知数据的多率环。我们提供了许多例子来说明这些标准的效率和力量。

In this paper, we investigate quantum Fourier analysis on subfactors and unitary fusion categories. We prove the complete positivity of the comultiplication for subfactors and derive a primary $n$-criterion of unitary categorifcation of multifusion rings. It is stronger than the Schur product criterion when $n\geq3$. The primary criterion could be transformed into various criteria which are easier to check in practice even for noncommutative, high-rank, high-multiplicity, multifusion rings. More importantly, the primary criterion could be localized on a sparse set, so that it works for multifusion rings with sparse known data. We give numerous examples to illustrate the efficiency and the power of these criteria.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源