论文标题
Draco-slam:分布式稳健的声学传播效果大满贯,用于成像Sonar配备了水下机器人团队
DRACo-SLAM: Distributed Robust Acoustic Communication-efficient SLAM for Imaging Sonar Equipped Underwater Robot Teams
论文作者
论文摘要
多机器人系统的重要任务是对机器人之间的环境和相对姿势产生共同的理解。只有当车辆了解自己的状态和团队成员的状态时,才能执行合作任务。然而,这主要是通过射手间范围内的水下机器人之间的直接集合来实现的。我们建议使用基于成像声纳的感知来为水下机器人进行新颖的分布式多机器人同时定位和映射(SLAM)框架。通过仅在机器人之间传递场景描述符,除非有可能闭合机器人间循环,否则我们无需传递原始传感器数据。我们利用成对一致的测量集最大化(PCM),使我们的系统可靠到错误的循环闭合。使用两个现实世界数据集证明了系统的功能,一个具有三个机器人,另一个带有两个机器人。我们表明,我们的系统有效地估计了多机器人系统的轨迹,并保持了机器人间通信低的带宽要求。据我们所知,本文使用真实成像声纳数据(我们使用模拟通信)描述了多机器人大满贯的第一个实例。代码链接:https://github.com/jake3991/draco-slam。
An essential task for a multi-robot system is generating a common understanding of the environment and relative poses between robots. Cooperative tasks can be executed only when a vehicle has knowledge of its own state and the states of the team members. However, this has primarily been achieved with direct rendezvous between underwater robots, via inter-robot ranging. We propose a novel distributed multi-robot simultaneous localization and mapping (SLAM) framework for underwater robots using imaging sonar-based perception. By passing only scene descriptors between robots, we do not need to pass raw sensor data unless there is a likelihood of inter-robot loop closure. We utilize pairwise consistent measurement set maximization (PCM), making our system robust to erroneous loop closures. The functionality of our system is demonstrated using two real-world datasets, one with three robots and another with two robots. We show that our system effectively estimates the trajectories of the multi-robot system and keeps the bandwidth requirements of inter-robot communication low. To our knowledge, this paper describes the first instance of multi-robot SLAM using real imaging sonar data (which we implement offline, using simulated communication). Code link: https://github.com/jake3991/DRACo-SLAM.