论文标题

天文不确定时间序列的可解释分类

Explainable classification of astronomical uncertain time series

论文作者

Mbouopda, Michael Franklin, Ishida, Emille E O, Nguifo, Engelbert Mephu, Gangler, Emmanuel

论文摘要

探索宇宙的扩张历史,了解其进化阶段,并预测其未来的进化是天体物理学的重要目标。如今,机器学习工具用于通过分析瞬态来源来帮助实现这些目标,这些瞬态来源被建模为不确定的时间序列。尽管Black-Box方法具有可观的性能,但是现有的可解释时间序列方法无法获得此类数据的可接受性能。此外,在这些方法中很少考虑数据不确定性。在这项工作中,我们提出了一个基于不确定的子序列模型,该模型可实现与最新方法相当的分类。与估计预测不确定性模型的共形学习不同,我们的方法将数据不确定性作为附加输入。此外,我们的方法是可以解释的,使领域专家具有检查模型并解释其预测的能力。所提出的方法的解释性也有可能通过提出重要子序列来启发理论天体物理学建模中的新发展,这些子序列描绘了光曲线形状的细节。数据集,我们实验的源代码以及结果可在公共存储库中提供。

Exploring the expansion history of the universe, understanding its evolutionary stages, and predicting its future evolution are important goals in astrophysics. Today, machine learning tools are used to help achieving these goals by analyzing transient sources, which are modeled as uncertain time series. Although black-box methods achieve appreciable performance, existing interpretable time series methods failed to obtain acceptable performance for this type of data. Furthermore, data uncertainty is rarely taken into account in these methods. In this work, we propose an uncertaintyaware subsequence based model which achieves a classification comparable to that of state-of-the-art methods. Unlike conformal learning which estimates model uncertainty on predictions, our method takes data uncertainty as additional input. Moreover, our approach is explainable-by-design, giving domain experts the ability to inspect the model and explain its predictions. The explainability of the proposed method has also the potential to inspire new developments in theoretical astrophysics modeling by suggesting important subsequences which depict details of light curve shapes. The dataset, the source code of our experiment, and the results are made available on a public repository.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源