论文标题
无能:防御基于gan的面部操纵
UnGANable: Defending Against GAN-based Face Manipulation
论文作者
论文摘要
深击对我们的社会构成了严重的视觉错误信息威胁。一种代表性的DeepFake应用程序是面部操纵,它可以在图像中修改受害者的面部属性,例如改变她的年龄或头发颜色。最先进的面部操纵技术依赖于生成的对抗网络(GAN)。在本文中,我们提出了第一个防御系统,即对基于GAN的面部操纵的行为。在特定的,不可能的侧重于防御gan倒置上,这是面部操纵的重要步骤。它的核心技术是在图像空间中搜索原始图像(称为目标图像)周围的替代图像(称为遮盖的图像)。当在线发布时,这些隐藏的图像可能会危害GAN倒置过程。我们考虑了两种最新的反转技术,包括基于优化的反转和混合反演,并根据防御者的背景知识在五种情况下设计五个不同的防御。在两个基准面部数据集中训练的四个流行的GAN模型上进行了广泛的实验表明,无法实现的效果和实用性表现出色,并且表现优于多种基线方法。我们进一步调查了四个自适应对手,以绕过不可能的对手,并表明其中一些是有效的。
Deepfakes pose severe threats of visual misinformation to our society. One representative deepfake application is face manipulation that modifies a victim's facial attributes in an image, e.g., changing her age or hair color. The state-of-the-art face manipulation techniques rely on Generative Adversarial Networks (GANs). In this paper, we propose the first defense system, namely UnGANable, against GAN-inversion-based face manipulation. In specific, UnGANable focuses on defending GAN inversion, an essential step for face manipulation. Its core technique is to search for alternative images (called cloaked images) around the original images (called target images) in image space. When posted online, these cloaked images can jeopardize the GAN inversion process. We consider two state-of-the-art inversion techniques including optimization-based inversion and hybrid inversion, and design five different defenses under five scenarios depending on the defender's background knowledge. Extensive experiments on four popular GAN models trained on two benchmark face datasets show that UnGANable achieves remarkable effectiveness and utility performance, and outperforms multiple baseline methods. We further investigate four adaptive adversaries to bypass UnGANable and show that some of them are slightly effective.