论文标题

确保基于视觉的群体形成控制的安全

Assuring Safety of Vision-Based Swarm Formation Control

论文作者

Hsieh, Chiao, Koh, Yubin, Li, Yangge, Mitra, Sayan

论文摘要

基于视觉的形成控制系统很有吸引力,因为它们可以使用廉价的传感器,并且可以在受GPS有限的环境中工作。此类系统的安全保证是具有挑战性的:视觉部分的准确性取决于复杂的方式,这些错误在系统中传播并导致不正确的控制动作,并且没有正式的端到端推理规范。我们解决了这个问题,并提出了一种基于视觉形成控制的安全性的技术:首先,我们提出了一种构建与基于视觉感知一致的量化器的方案。接下来,我们展示如何将标准量化共识算法的收敛分析适用于构造的量化器。我们使用最近定义的感知合同概念,使用来自不同地面真实状态,环境和天气状况的采样数据在实际的基于视觉的感知管道上创建错误界限。具体而言,我们在对数极性坐标中使用量化器,并表明该量化器适用于基于视觉的位置估计的构造感知合同,在该估计中,由于代理之间的绝对距离,该误差会恶化。我们使用此不均匀的量化器构建了形成控制算法,并证明了其融合,采用现有结果进行量化共识。

Vision-based formation control systems are attractive because they can use inexpensive sensors and can work in GPS-denied environments. The safety assurance for such systems is challenging: the vision component's accuracy depends on the environment in complicated ways, these errors propagate through the system and lead to incorrect control actions, and there exists no formal specification for end-to-end reasoning. We address this problem and propose a technique for safety assurance of vision-based formation control: First, we propose a scheme for constructing quantizers that are consistent with vision-based perception. Next, we show how the convergence analysis of a standard quantized consensus algorithm can be adapted for the constructed quantizers. We use the recently defined notion of perception contracts to create error bounds on the actual vision-based perception pipeline using sampled data from different ground truth states, environments, and weather conditions. Specifically, we use a quantizer in logarithmic polar coordinates, and we show that this quantizer is suitable for the constructed perception contracts for the vision-based position estimation, where the error worsens with respect to the absolute distance between agents. We build our formation control algorithm with this nonuniform quantizer, and we prove its convergence employing an existing result for quantized consensus.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源