论文标题
在形状对称性破裂的eft上
On the EFT of Conformal Symmetry Breaking
论文作者
论文摘要
由于存在缺陷或其他背景,可以自发地破坏整形对称性,这给某些标量运算符提供了对称性的真空期望值(VEV)。我们研究了这些背景周围波动的有效领域理论,表明它将其组织为VEV倒数力量的扩展,并计算一些领先的校正。我们专注于与伪符号宇宙相关的四维洛伦兹理论中的类似太空缺陷的情况,尽管结论扩展到了其他类型的缺陷以及与对称对称性对称性的保形对称性的破坏。
Conformal symmetry can be spontaneously broken due to the presence of a defect or other background, which gives a symmetry-breaking vacuum expectation value (VEV) to some scalar operators. We study the effective field theory of fluctuations around these backgrounds, showing that it organizes as an expansion in powers of the inverse of the VEV, and computing some of the leading corrections. We focus on the case of space-like defects in a four-dimensional Lorentzian theory relevant to the pseudo-conformal universe scenario, although the conclusions extend to other kinds of defects and to the breaking of conformal symmetry to Poincaré symmetry.