论文标题
部分可观测时空混沌系统的无模型预测
Neural-network solutions to stochastic reaction networks
论文作者
论文摘要
随机反应网络,其中化学物质通过一组反应进化,被广泛用于模拟物理,化学和生物学中的随机过程。为了表征物种数量状态空间中不断发展的关节概率分布,需要求解一个普通微分方程的系统,即化学主方程,其中计数状态空间的大小随着物种的类型而成倍增加,这使研究随机反应网络变得具有挑战性。在这里,我们提出了一种使用变异自回归网络来解决化学主方程的机器学习方法。培训自回归网络在增强学习框架中采用策略梯度算法,该算法不需要通过另一种方法在先验中模拟的任何数据。与模拟单轨迹不同,该方法跟踪关节概率分布的时间演变,并支持配置的直接采样并计算其归一化的关节概率。我们将方法应用于物理和生物学的代表性示例,并证明它可以准确地生成概率分布。变异自回旋网络在表示多模式分布,与保护定律合作,实现时间依赖性反应速率方面具有可塑性,并且对于高维反应网络具有有效的效率,可以允许灵活的上限限制。结果提出了一种基于现代机器学习的随机反应网络的一般方法。
The stochastic reaction network in which chemical species evolve through a set of reactions is widely used to model stochastic processes in physics, chemistry and biology. To characterize the evolving joint probability distribution in the state space of species counts requires solving a system of ordinary differential equations, the chemical master equation, where the size of the counting state space increases exponentially with the type of species, making it challenging to investigate the stochastic reaction network. Here, we propose a machine-learning approach using the variational autoregressive network to solve the chemical master equation. Training the autoregressive network employs the policy gradient algorithm in the reinforcement learning framework, which does not require any data simulated in prior by another method. Different from simulating single trajectories, the approach tracks the time evolution of the joint probability distribution, and supports direct sampling of configurations and computing their normalized joint probabilities. We apply the approach to representative examples in physics and biology, and demonstrate that it accurately generates the probability distribution over time. The variational autoregressive network exhibits a plasticity in representing the multimodal distribution, cooperates with the conservation law, enables time-dependent reaction rates, and is efficient for high-dimensional reaction networks with allowing a flexible upper count limit. The results suggest a general approach to investigate stochastic reaction networks based on modern machine learning.