论文标题

违反:因果语言模型的对比度学习

ContraCLM: Contrastive Learning For Causal Language Model

论文作者

Jain, Nihal, Zhang, Dejiao, Ahmad, Wasi Uddin, Wang, Zijian, Nan, Feng, Li, Xiaopeng, Tan, Ming, Nallapati, Ramesh, Ray, Baishakhi, Bhatia, Parminder, Ma, Xiaofei, Xiang, Bing

论文摘要

尽管因果语言模型令人兴奋,但由于歧视能力差,表示形式的表现力在很大程度上受到限制。为了解决这个问题,我们提出了Contraclm,这是一个在令牌级别和序列级别上的新型对比学习框架。我们对各种下游任务进行评估。我们表明,违规行为增强了对表示形式的歧视,并与仅编码模型的差距弥合了差距,从而使因果语言模型更适合于语言生成以外的任务。具体来说,我们在语义文本相似性任务上获得了$ 44 \%$的相对改进,而代码对代码搜索任务的$ 34 \%$。此外,通过提高表示形式的表现力,contraclm还以$ 9 \%$ $ $ $ $的相对提高人类基准的执行准确性提高了源代码生成能力。

Despite exciting progress in causal language models, the expressiveness of the representations is largely limited due to poor discrimination ability. To remedy this issue, we present ContraCLM, a novel contrastive learning framework at both token-level and sequence-level. We assess ContraCLM on a variety of downstream tasks. We show that ContraCLM enhances discrimination of the representations and bridges the gap with the encoder-only models, which makes causal language models better suited for tasks beyond language generation. Specifically, we attain $44\%$ relative improvement on the Semantic Textual Similarity tasks and $34\%$ on Code-to-Code Search tasks. Furthermore, by improving the expressiveness of the representations, ContraCLM also boosts the source code generation capability with $9\%$ relative improvement on execution accuracy on the HumanEval benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源