论文标题

运动分析:当前状态,制造业的应用以及未来的前景

Movement Analytics: Current Status, Application to Manufacturing, and Future Prospects from an AI Perspective

论文作者

Baumgartner, Peter, Smith, Daniel, Rana, Mashud, Kapoor, Reena, Tartaglia, Elena, Schutt, Andreas, Rahman, Ashfaqur, Taylor, John, Dunstall, Simon

论文摘要

以数据为导向的决策成为制造公司不可或缺的一部分。收集数据并通常用于提高效率并为客户生产高质量的物品。基于物联网和其他形式的对象跟踪是一种新兴工具,用于收集对象/实体(例如人工工人,移动车辆,手推车等)的运动数据,以期间的时间和时间。运动数据可以提供有价值的见解,例如过程瓶颈,资源利用率,有效的工作时间等,可用于决策和提高效率。 将运动数据变成工业管理和决策的有价值信息需要分析方法。我们将此过程称为运动分析。本文档的目的是审查制造业和更广泛的运动分析的当前工作状态。 我们从理论的角度和应用程序的角度调查了相关工作。从理论角度来看,我们强调了两个研究领域的有用方法:机器学习和基于逻辑的知识表示。我们还鉴于运动分析,我们还回顾了它们的组合,并讨论了未来开发和应用的有希望的领域。此外,我们涉及约束优化。 从应用程序的角度来看,我们在一般意义和各个行业中回顾了这些方法对运动分析的应用。我们还描述了当前可用的商业现成的用于跟踪制造业的商业现成产品,我们概述了数字双胞胎及其应用的主要概念。

Data-driven decision making is becoming an integral part of manufacturing companies. Data is collected and commonly used to improve efficiency and produce high quality items for the customers. IoT-based and other forms of object tracking are an emerging tool for collecting movement data of objects/entities (e.g. human workers, moving vehicles, trolleys etc.) over space and time. Movement data can provide valuable insights like process bottlenecks, resource utilization, effective working time etc. that can be used for decision making and improving efficiency. Turning movement data into valuable information for industrial management and decision making requires analysis methods. We refer to this process as movement analytics. The purpose of this document is to review the current state of work for movement analytics both in manufacturing and more broadly. We survey relevant work from both a theoretical perspective and an application perspective. From the theoretical perspective, we put an emphasis on useful methods from two research areas: machine learning, and logic-based knowledge representation. We also review their combinations in view of movement analytics, and we discuss promising areas for future development and application. Furthermore, we touch on constraint optimization. From an application perspective, we review applications of these methods to movement analytics in a general sense and across various industries. We also describe currently available commercial off-the-shelf products for tracking in manufacturing, and we overview main concepts of digital twins and their applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源