论文标题
在对抗攻击下学习动态系统 - 无空间属性透视图
Learning of Dynamical Systems under Adversarial Attacks -- Null Space Property Perspective
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study the identification of a linear time-invariant dynamical system affected by large-and-sparse disturbances modeling adversarial attacks or faults. Under the assumption that the states are measurable, we develop necessary and sufficient conditions for the recovery of the system matrices by solving a constrained lasso-type optimization problem. In addition, we provide an upper bound on the estimation error whenever the disturbance sequence is a combination of small noise values and large adversarial values. Our results depend on the null space property that has been widely used in the lasso literature, and we investigate under what conditions this property holds for linear time-invariant dynamical systems. Lastly, we further study the conditions for a specific probabilistic model and support the results with numerical experiments.